
Copyright © 2007 Illuminata, Inc.

Illuminata, Inc. • 4 Water Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0198 • www.illuminata.com

TM

Research Note

Gordon Haff
27 July 2007

The Server Virtualization Bazaar,
Circa 2007

Inspired by both industry hype and legitimate customer excitement, many
companies seem to have taken to using the “virtualization” moniker more as the
hip phrase of the moment than as something that’s supposed to convey actual
meaning. Think of it as “eCommerce” or “Internet-enabled” for the Noughts. The
din is loud. It doesn’t help matters that virtualization, in the broad sense of
“remapping physical resources to more useful logical ones,” spans a huge swath of
technologies—including some that are so baked-in that most people don’t even
think of them as virtualization any longer.

However, one particular group of approaches is capturing an outsized share of the
limelight today. That would, of course, be what’s commonly referred to as “server
virtualization.” Although server virtualization is in the minds of many
inextricably tied to the name of one company—VMware—there are many
companies in this space. Their offerings include not only products that let multiple
virtual machines (VMs) coexist on a single physical server, but also related
approaches such as operating system (OS) virtualization or containers.

In the pages that follow, I offer a guide to today’s server virtualization bazaar—
which at first glance can perhaps seem just a dreadfully confusing jumble.

ghaff@
illuminata.com

single user license Gordon R Haff
Illuminata, Inc.

Personally licensed to
Gordon R Haff of
Illuminata, Inc. for your
personal education and
individual work functions.
Providing its contents to
external parties, including
by quotation, violates our
copyright and is expressly
forbidden.

*B8069765888D6CC

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

2

This Bazaar’s Beginnings

About five years ago, I wrote a research note that
considered the various approaches to splitting up
physical servers so that they could run multiple
applications in isolation from each other.1 At that
time, virtual machines were just one technique
among many. They’d been around since the late
1960s on IBM mainframes, but had long played
second-fiddle to more production-focused
partitioning techniques that tilted towards isolation
even at the expense of flexibility—a common
tradeoff where workload management is concerned.
However, even in 2002, it was clear that VMs were
destined to become more important, given their
introduction on volume Linux and Windows
servers by VMware. By then, SWsoft had also
released a product, Virtuozzo, which also let
multiple applications run side-by-side on volume
servers using a different technical approach—one
we call “containers” or “OS virtualization.”

Partitions enforced by hardware (physical
partitions) and related techniques that are more
software-based but still maintain a close
correspondence between underlying hardware and
partition boundaries remain important in scale-up
system designs. But hardware-oriented styles of
partitioning no longer dominate the discussion as
they did a few years back.

In part, this is because smaller, higher-volume
systems have become an ever-increasing segment
of the computing landscape—even in roles that
large RISC servers and mainframes once
dominated. Physical partitioning, which typically
can only carve systems into relatively coarse
chunks, is of little interest in servers that are often
smaller than the smallest physical partition would
be. However, it’s also the case that, although VMs
were and are valued by users for their slicing and
dicing prowess—which lets multiple applications be
consolidated onto a single physical server—they
are increasingly called on to do more. Because
virtualization, almost by definition, provides some
level of abstraction between applications and/or
operating systems and what sits beneath,

1 See our The Partitioning Bazaar: 2002.

virtualization also makes it easier to then move
those applications around. Under rubrics such as
“virtual infrastructure,” these techniques leverage
virtualization to create an application environment
that is far less tied to specific physical servers—and
can thereby be more easily moved around in
response to changes in usage patterns or problems
with some underlying hardware.

Reducing costs by folding multiple underutilized
servers into one (server consolidation) and being
able to quickly fire up and tear down test
environments remain important drivers of
virtualization adoption. However, improved
flexibility in deploying and reconfiguring
applications is increasingly important as well.

With that as background, let’s consider the two
major approaches to volume server virtualization:
VMs and operating system virtualization.

Virtual Machines

Virtual Machines (VMs) are software abstractions,
a way to fool operating systems and their
applications into thinking that they have access to a
real (i.e. physical) server when, in fact, they have
access to only a virtualized portion of one. Each
VM then has its own independent OS and
applications, and is not even aware of any other
VMs that may be running on the same box, other
than through the usual network interactions that
systems have. Thus, the operating systems and
applications from VMs are isolated from each other
in the same manner as if they were running on
separate physical servers. They’re created by a
virtual machine monitor (VMM), often called a
“hypervisor,” that sits on top of the hardware,
where it creates and manages one or more VMs
sitting on top of the hypervisor.

In “host-based” implementations, the VMM runs
within a standard copy of an operating system. This
has performance implications; any time the VMM
needs to communicate with any I/O device, it needs
to switch context back to the virtual machine
application running atop the host OS, so that the
host OS can do the actual I/O. This long I/O path

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

3

and the associated context switches carry with
them a significant performance penalty for the
I/O-intensive applications that characterize many
heavy-duty server workloads. However, it has the
important advantage of simplicity. The VM
software is installed like any standard program.
Furthermore, the standard operating system device
drivers communicate with peripherals.

By contrast, a native hypervisor runs directly on
top of the system hardware. It may be part of an
operating system that has been modified to
function as a hypervisor itself; this is the approach
Microsoft will be taking, for example, when it
builds virtualization into the next version of
Windows Server. Alternatively, it may be a separate
thinned-down standalone hypervisor that runs
directly on top of the hardware in place of a
conventional operating system. This is the case
with VMware’s ESX Server, for instance. Finally,
the hypervisor may even be partly or wholly
burned into firmware that ships with the system, as
in the case of IBM System p LPARs.2

OS Virtualization, a.k.a. Containers

Containers3 virtualize the system at the OS kernel
layer. As with VMs, the applications running in
each container believe that they have full, unshared
access to their very own copy of that OS. Unlike
VMs, containers exist with only one copy of the
OS. There are no guest OSs.

Containers build additional separation onto the
basic operating system process model. Although a
process is not truly an independent environment, it
does provide basic isolation and consistent

2 In that firmware is just software burned into a chip,
this isn’t fundamentally different from a standalone
hypervisor, although it may imply a smaller-
footprint software layer that can fit into memory.
Vendor-specific hypervisors also tend to extensively
use the vendor’s bespoke virtualization-assist
instructions and embedded management processors.

3 The term “containers” is also sometimes used to
refer to various types of application encapsulation,
such as described in our Trigence AE – Encapsulating
Applications. For our purposes here, I use containers to
refer more narrowly to virtualization at the
operating system level.

interfaces. For example, each process has its own
identity and security attributes, address space,
copies of registers, and independent references to
common system resources. These various features
standardize communications between processes and
help reduce the degree to which wayward processes
and applications can affect the system as a whole.
Over time, add-on resource management tools
supported the ability to group processes into
higher-level constructs such as “workloads” or
“applications”—primarily to guarantee
performance (or limit it) for different applications.

Containers build on this concept of workload
groups by further isolating them from each other.
A container may replicate a small subset of the
operating system—mostly the libraries or writable
data structures that can differ from one OS
instance to another. However, for the most part, the
containers running on a physical server (or within
some form of partition,including a VM) share a
single copy of the operating system.

Because containers run atop a single copy of the
operating system, they consume very few system
resources such as memory and CPU cycles
compared to VMs, which require a full operating
system image for each guest. They can simplify
patches and other OS upgrades as well; again,
there’s only one OS instance so any changes can be
immediately shared by all the application instances
running on top. The downside? Well, a potentially
big one is that there’s only one OS instance.
There’s no way to run two different OSs on one
server. Potentially more troublesome is that, while
applications and libraries may vary from container
to container, you can’t even run multiple versions
of the same OS on a single server to support
applications that need different versions. These
tradeoffs help to explain why hosting providers
were early adopters of this virtualization approach;
lower overhead translates to fewer servers and
higher profits. At the same time, such organizations
tend to run highly standardized environments
without a lot of different versions of operating
systems kicking around. Those with a greater need
to change-manage divergent applications would be
less well served.

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

4

The x86 VM Landscape

With that as background, let’s now take a look at
some of the major players in virtual machine
technologies for the x86 architecture (see Table 1).

The 800-pound gorilla is VMware, of course.
VMware has evolved from a maker of tools for
developers to a provider of a full range of
infrastructure services for datacenters as well.
Along the way, it was acquired by EMC but it
remains—very atypically for an EMC property—
largely independent. It will, in fact, soon be re-
spinning out 10 percent of the company in an IPO.

VMware’s flagship product is Virtual Infrastructure
3, a suite of products including Virtual Center and
VMotion that build on the foundation of VMware’s
native hypervisor, ESX Server. The most intriguing
news hasn’t been announced, but has been spoken
of by a number of sources. That’s the idea of an
“ESX light,” an embedded hypervisor that will
supposedly ship in at least some Dell servers and
possibly those from others as well. Such a move
would help to significantly increase virtualization’s
footprint in both the enterprise and SMB; it would
also make it that much harder for vendors to
capture revenue from base-level hypervisor
products as VMs move one step closer to, if not
commoditization (an overused and misused term),
at least built-inness.4

The highest profile alternative to VMware is Xen.
Xen itself isn’t a product. It’s an Open Source
hypervisor project begun at the University of
Cambridge. As originally conceived and
implemented, it took an approach known as “para-
virtualization”—meaning that it supports
operating systems (OS) that have been modified to
interact with the hardware through a virtualization
layer. However, today, Xen implementations can
take advantage of Intel’s and AMD’s virtualization
assist hardware (known as Intel VT and AMD-V,
respectively) to run unmodified (that is, not para-
virtualized) guest operating systems.

4 See our Will We See an Embedded VMware “ESX Light”?, VMware
—VMwhere?, EMC Looks to Have It Both Ways, VMware on the
March, and VMware: Virtual Partitions for the Server Masses.

Xen comes to market in two forms. The first is as
technology integrated directly into the operating
system. It now ships in both Novell and Red Hat
Enterprise Linux products and will be making an
appearance in OpenSolaris shortly. In this
incarnation, one OS instance acts as the hypervisor
and its management controller (called Dom0);
additional OS instances can then run on top as
guests. Xen is also sold as a standalone hypervisor
by two companies: XenSource and Virtual Iron.
XenSource is the commercial entity formed out of
the Xen project. The company originally was
focused on a grandiose policy-based automation
effort, XenOptimizer, but has since scaled back
efforts to focus more narrowly on providing a
standalone hypervisor for Windows shops. Virtual
Iron’s current strategy is similar in many respects;
it, too, refocused from initial efforts that included a
proprietary hypervisor that could meld distributed
systems into a single large SMP over InfiniBand.5

With Xen, the Open Source world seemingly
coalesced around a single arrowhead, whereas
previously it was unclear whether any of the
fragmented, under-resourced Open Source server
virtualization would ever achieve any sort of
critical mass.6 However, KVM (Kernel-based
Virtual Machine) recently arrived on the scene,
backed by stealth-mode startup Qumranet. Linus
Torvalds has blessed the addition of KVM into the
Linux kernel; Brian Stephens, Red Hat’s CTO, has
spoken warmly of KVM’s approach of integrating
directly into the Linux kernel as well. Xen, in
contrast, is an independent component that
nonetheless can require tight integration with the
kernel—which can make keeping the two parts in
sync difficult. KVM is still in early stages but could
become of interest over the next two years
depending upon how the server virtualization
market evolves.7

5 See our Hypervisors in Boston, The Winding Road Toward x86
Virtualization, Virtual Iron’s Early Steps, and Forging Irons for
System-Spanning Virtualization.

6 E.g. User Mode Linux (UML), Plex86.
7 See our KVM Walks Onto the Field.

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

5

Then there’s Microsoft. Microsoft has been late,
even shockingly so, to the server virtualization
party. And it’s been so determined to own the
entire software pie that it’s only grudgingly
accommodated third-party server virtualization
products—even though they bring with them
plenty of opportunity to sell more Microsoft
products. For now, Microsoft is making do with
Virtual Server, a hosted VM product it picked up
from Connectix. It’s reasonably popular in
Microsoft shops, but hardly represents the state-of-
the-art in x86 virtualization. Microsoft’s strategic
play is to build virtualization into Windows Server
2008 (“Longhorn”). However, this technology,
which goes by the codename “Viridian,” won’t be
available until up to 180 days after the initial
release of Longhorn; it has been jettisoning
features to make even that tardy date. The only
thing working in Microsoft’s favor here is that,
even if the company isn’t thrilled to have people
using other virtualization products, that isn’t
keeping its customers from doing just that—and
buying Microsoft operating systems and
applications to use with them.8

The VM Landscape (non-x86)

Virtual machines don’t begin and end with the x86
architecture (see Table 2).

Indeed, what’s probably today’s most sophisticated
implementation was also the first—IBM’s z/VM on
its System z mainframes. z/VM’s origins are
intimately intertwined with early developments in
time-shared computing that took place in
Cambridge, Massachusetts during the early Sixties.
z/VM’s earliest roots are in CP-40, developed as a
research project on a specially-modified IBM
System/360 Model 40. CP-67 followed on a
System/360 Model 67, IBM’s first system with
built-in virtual memory hardware. Although VMs
on mainframes played second fiddle to IBM’s more
“production-oriented” operating systems for many
years, they found new life as a path to efficiently
supporting large numbers of simultaneous Linux

8 See our Microsoft Needs a Partner.

instances on a single box. This has been a major
factor behind IBM’s mainframe resurgence.

Beyond the mainframe, most major system vendors
offer some type of proprietary way to create virtual
machines on at least parts of their product lines.
IBM LPARs on its POWER-based servers were
initially a software-based partitioning scheme that
largely followed the outlines of underlying physical
hardware such as CPUs and network cards.
However, with the addition of capabilities such as
sub-CPU “micropartitioning” and virtual
networking—and the upcoming addition of Live
Partition Mobility to its System p lineup in late
2007—it has,by any measure, evolved into a full-
fledged virtualization approach.9 HP covers the
partitioning space with both physical partitions
(nPars) and logical/virtual partitions (vPars); to this
it has more recently added Integrity Virtual
Machines. Integrity VMs have the fine granularity
of vPars, but, like nPars, extend beyond the HP-UX
version of Unix to also include current or planned
support for Linux, Windows, and OpenVMS guests.

Sun’s offering is Logical Domains (LDoms) on its
UltraSPARC T1 “Niagara” servers. For now, this
represents only a slice of Sun’s SPARC-based
product line, but that slice will expand as Sun rolls
out more of its new generation SPARC processors
—first, the upcoming “Niagara 2” and then the
heftier “Rock” processor in 2008. For its part,
Hitachi has “Virtage” for its Itanium-based
BladeSymphony products. This product leverages
Itanium’s own flavor of hardware virtualization
assist, VT-I, to both allow single blades to be
divided up and multiple blades to be melded into a
single large SMP server.10

In short, server virtualization is hardly just an x86
phenomenon. Just about every major datacenter
server platform has some sort of virtualization play.

9 See our It Slices, It Dices, It Runs a Lot Faster, Hitachi’s Symphony of
Blades, and Virtualization: Management Ascendant.

10 See our Hitachi’s Symphony of Blades.

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

6

The Container Landscape

OS virtualization—containers—hasn’t garnered
the same level of attention that virtual machines
have (see Table 3). However, they’ve proven
popular for uses where minimizing overhead is a
priority. Hosting providers are the canonical
example of this use case, although we’ve also
spoken with enterprise customers who have
likewise gone the container route to minimize their
use of hardware resources for virtualization.

SWsoft has clearly been the most prominent
proponent of a standalone containers product.
Founded in 1997, SWsoft released its Virtuozzo
product in 2001. The company has historically very
much concentrated on Web hosting companies
where it has had considerable success, in part
because it developed a rich set of complementary
tools that cater to that market. However, more
recently, SWsoft says that it has increasingly had
success selling into the enterprise market as well,
although that remains less than half its total
business. The privately held company claims to be
profitable and getting towards $100 million in
annual revenues.11

The other most visible player in this technology
space is Sun, whose Solaris Containers build
namespace-isolation on top of the zones technology
and administrative concept from Solaris resource
management. (Indeed, Containers is essentially a
Sun marketing name; technical documentation and
the like all use the “zones” nomenclature instead.)
For a time, in characteristic fashion, Sun seemed
determined to pitch its containers as not only an
alternative, but as a form of software-based
partitioning superior to virtual machines for
essentially all uses. Sun has since taken a more
nuanced approach; containers have, to all
appearances, proven popular within the Solaris base
but Sun is now also planning to integrate Xen-
based virtual machines into Solaris as a
complementary virtual machine technology.12

11 See our Virtuozzo: The Lighter Side of Virtual Machines and New
Containments for New Times.

12 See our Sun Adds Another Virtualization Flavor and Solaris Rises.

Although Sun has led the charge towards
containers among the remaining Unix vendors,
both IBM and HP have or will have their own
flavors. In HP’s case, they’re called Secure Resource
Partitions and are based on HP’s Process Resource
Management (PRM) product with the addition of
security isolation components from HP-UX
Security Containment. For IBM’s part, containers
are part of the forthcoming AIX 6 in which they’re
called IBM Workload Partitions (WPAR). The neat
twist with IBM’s offer is the addition of container
mobility—the ability to move a running container
from one server to another—using technology that
it acquired when it bought Meiosys.13

Conclusion

Server virtualization in its various forms has,
within a remarkably short time, come from being
an almost fringe technology to something that’s
often at the center of IT infrastructure discussions.
One company, VMware, is no small part of the
reason for that, and VMware will continue to be a
very important player in this space for the
foreseeable future.

But that doesn’t mean than server virtualization
begins and ends with VMware products. It doesn’t
even begin and end with the x86 architecture or
with the specific virtual machine approach. It’s a lot
more complicated than that—which isn’t a bad
thing because the problems that server
virtualization are being called on to solve aren’t
simple either.

13 See our Stateful Transition: Coming to a Server Near You.

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

7
Table 1. Virtual Machines for x86

Product/Technology Type Host OS(s) Needs HW
Support?

Supported Guest(s) Notes

KVM OS-based VMs Linux Y Linux Kernel-based alternative to Xen. Still under development.

Microsoft Virtual
Server Hosted VMs Windows N Windows, Linux The fruits of Microsoft’s Connectix acquisition. Free.

Microsoft Windows
Server virtualization
“Viridian”

OS-based VMs
Windows
Server 2008

Y Windows, Linux
Scheduled for release within 180 days of Windows Server 2008. Some features have
been cut.

Parallels Workstation
(SWsoft subsidiary) Hosted VMs

Mac OS X,
Windows,
Linux

N
Mac OS X, Windows,
Linux, FreeBSD

More a consumer desktop play than VMware. Supposedly working on a server
version.

Virtual Iron Standalone
hypervisor

None Y Windows, Linux
Initially built own hypervisor but switched to Xen in concert with own
management products.

VMware ESX Server Standalone
hypervisor

None N
Windows, Linux,
Solaris, NetWare

Hypervisor foundation for VMware’s Virtual Infrastructure 3 virtualization services.

VMware Server Hosted VMs
Windows,
Linux

N
Windows, Linux,
Solaris

Free hosted product based on former VMware GSX Server.

VMware Workstation Hosted VMs
Windows,
Linux

N
Windows, Linux,
Solaris, NetWare,
FreeBSD

VMware’s original product; developer-focused.

Xen Project
Integratable
hypervisor
technology

None
N (but req
modified
OS if not)

Varies by
implementation

Currently the standard hypervisor technology used for Linux. Also used in
standalone products from Virtual Iron and XenSource.

XenSource
XenEnterprise

Standalone
hypervisor

None Y Linux, Windows
Company was founded by the creators of the Xen project at the University of
Cambridge.

XenSource XenServer Standalone
hypervisor

None Y Windows Low-priced product version for Windows-only.

single user license Gordon R Haff
Illuminata, Inc.

*B8069765888D6CC

8

Table 2. Virtual Machines (non-x86)

Product/Technology Type Host Platform(s) Supported Guest(s) Notes

Hitachi Virtage Hardware-based
BladeSymphony
(Itanium)

Linux, Windows Adapted from previous mainframe work. Expansion to Xeon blades planned.

HP Integrity Virtual
Machines (IVM)

OS-based
HP-UX on Integrity
(Itanium)

HP-UX, Windows,
Linux

Part of HP Virtual Server Environment (VSE) together with nPars, vPars, and SRP
partitioning.

IBM Logical Partitioning
(LPAR) on System p

Hardware-based
IBM System p
(POWER)

AIX, Linux
Originally more a partitioning technology à la System z LPARs. Evolved to be more
“VM-like.”

IBM z/VM
Hardware/OS-
based

IBM System z
Linux, z/OS, VSE, CMS,
z/VM

The ancestral VM. Roots go back to the mid Sixties in Cambridge, MA.

Sun Logical Domains
(LDoms)

Hardware-based
SPARC (Sun Fire
T1000/2000)

Solaris, Ubuntu Linux
These capabilities not available in APL line or UntraSPARC IV+ servers (many of
which have physical partitioning as an alternative).

Xen Project
Integrate-able
hypervisor
technology

Depends on
implementation

Varies by
implementation

Although experimental code is available for a number of platforms, Xen is primarily
an x86-centric technology.

Table 3. OS Containers

Product/Technology Host Platform(s) Notes

HP Secure Resource
Partitions

HP-UX 11iv2 on
Integrity

Based on HP’s Process Resource Management (PRM) with security isolation provided through integration with the HP-UX Security
Containment product.

IBM Workload Partitions
(WPAR)

AIX 6 on System p
New with AIX 6. IBM has also largely overhauled their resource group management and implemented container mobility using
technology from its Meiosys acquisition.

Linux VServer Linux An independent Open Source container project for Linux. Activity level fairly low.

Sun Solaris Containers
Solaris 10 (x86,
SPARC)

Build on the “zones” in Solaris resource management. BrandZ (Branded Zones) is newer technology that allows Linux binaries to
run on top of Solaris.

SWsoft Virtuozzo Linux, Windows
Company largely got its start catering to hosting providers but has since started to diversify base. OpenVZ is complementary
Open Source project.

