
Illuminata, Inc. • 4 Water Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0198 • www.illuminata.com

TM

Research Note

Gordon Haff
31 January 2008

The Cloud vs. Open Source

Open Source was clearly the software story of the decade between about 1995 and
2005. Linux unified the Unix family of operating systems to a degree that none of
the formal Unix standardization and cooperation efforts ever came close to
achieving. Other Open Source software from programming tools to databases to
application servers captured huge market share, especially among new, network-
facing applications and services. Open Source is in many ways a child of the
Internet. At the same time, the vast, economical panoply of Open Source
infrastructure has played no small role in the Internet’s build-out.

Open Source software remains immensely important. However, its impact won’t
continue to expand to nearly the same degree that it’s done over the past ten years.
There are a variety of reasons, but one predominates: the shift of software from
the desktop and the datacenter out into the network cloud. In short, the new action
in software isn’t taking place where source code availability has the same
applicability or import as it does when the software is being loaded up and run on
local hardware.

Indeed, focusing too narrowly on Open Source
in a Cloud Computing1 world is
counterproductive. Source code may matter,

or it may not, depending upon the
circumstances. But it’s the many other
aspects of Open Source development

(community, extensibility) or Open Source
principles (portability of data, open formats) that matter far more.

Why Open Source Anyway?

Open Source software as we know it today is, in important respects, the product
of the environment from which it first sprang. The setting was largely academic
(University of California at Berkeley in the case of BSD Unix, and MIT in the
case of the GPL), the operating system platform was largely Unix, and the
relevant computing networks were the precursors to the Internet.

Without recapitulating the long and twisted history of Unix’ genesis at Bell
Labs, its growth into a commercial operating system and the subsequent Unix

1 See our Defining Cloud Computing for our view of what Cloud Computing is (and isn’t). We
consider Software as a Service (SaaS), Hardware as a Service (HaaS), Data as a Service
(DaaS), and Web 2.0 to all be part of the cloud. The common thread is that the Network
functions as a sort of abstraction layer and allows access mostly through “Web-y”
protocols, languages, and standards like HTTP, RSS, XML, Javascript, and REST

Copyright © 2008 Illuminata, Inc.

ghaff@
illuminata.com

single user license Gordon R Haff
Illuminata, Inc.

Personally licensed to Gordon
R Haff of Illuminata, Inc. for
your personal education and
individual work functions.
Providing its contents to
external parties, including by
quotation, violates our copyright
and is expressly forbidden.

*07684B70CFA18BF

single user license Gordon R Haff
Illuminata, Inc.

*07684B70CFA18BF

2

wars, suffice it to say that a number of historical
factors greatly influenced what we usually think of
as Open Source today:

• Throughout the early history of Unix, source
code was widely available and widely-shared.
For example, large chunks of mid-Seventies
vintage Sixth Edition Unix became widely
available in samizdat fashion; and were
eventually published in a well-known book
Lion’s Commentary on UNIX 6th Edition
(though the book was published with the right
to use the code for educational purposes only).

• During the 1980s, the mechanisms to exchange
files and communicate through email and
newsgroups was fairly commonplace in the
computer science departments at places like
Berkeley and MIT at a time when they were
still relatively unknown in the broader world.2

• Unix was designed as a portable operating
system that could run on a wide range of
incompatible hardware platforms, but had to be
modified to do so.

Thus, this culture had a history of sharing source
code, mechanisms to share source code and work on
it collaboratively, and—by no means least—access
to source code was very useful because you needed
it to port programs to all the varied OS flavors,
processor architectures, and hardware designs out
there.3 “Software Freedom”4 therefore focused on
viewing, modifying, and redistributing source code
—often with license terms that reflected specific
technical aspects of a Unix environment—because
the source code and the right to run it were what
mattered most. The ideological underpinnings of
the Software Freedom movement are not really
about Open Source per se but, historically, Open

2 The first version of the GPL license dates to February
1989; BSD got its start about a decade earlier.

3 Although “freeware” (software that could be freely
used without payment) was ubiquitous on PCs
essentially from the beginning, Open Source didn’t
take off in that space until it was already flourishing
elsewhere. I suspect one reason is that source code
was far less useful on the relatively homogeneous
“IBM PC.”

4 “Free software is a matter of liberty, not price. To
understand the concept, you should think of free as
in free speech, not as in free beer.” tinyurl.com/4zrk3

Source was the practical mechanism to achieving
the greatest degree of freedom.

As a result, today, most people tend to think of
Software Freedom and Open Source as more or less
the same thing—even though they really aren’t.

The Rise of the Cloud

Until recently, the basics of operating systems and
the way that software gets installed on them and
used hadn’t changed a whole lot from the state of
affairs in the early days of Open Source.5

To be sure, we’ve seen a considerable reduction in
the number of platform variants over the years
with the result that a single set of program binaries
can usually run across x86 systems running either
most mainstream Linux distributions or Windows.
So access to source code is arguably less important
to typical users than it once was.

Nonetheless, Open Source as essentially an
approach to development and community has been
broadly successful. That end-users can look at and
modify source code as well is almost incidental in
most cases.

However, we’re starting to see a major shift in the
way that software gets delivered and run. I’m
speaking, of course, about Cloud Computing. This
is the concept that, rather than loading up software
on your own computer, you use it in the form of a
service over the Internet. Canonical examples
include Google search and Salesforce.com, but
examples are proliferating—albeit more quickly in
the consumer space than in enterprise applications.
Think of the whole “Web 2.0” industry from
Facebook to Flickr.

Why? The most widely-used analogy is to the
electric power utility. Originally, everyone
generated their own power. Now it’s usually just
delivered over the grid with each user taking
whatever is needed at a given point in time, and
paying based on how much they use. The reason is
primarily a matter of scale. It’s far more cost-
effective to have specialists operate a few big power

5 See our The Future of the Operating System.

single user license Gordon R Haff
Illuminata, Inc.

*07684B70CFA18BF

3

plants than for thousands or millions of consumers
to each run off their own generators.

There remain many questions about how the Cloud
will evolve. What types of processes and
applications will enterprises be willing to move into
the Cloud? To what degree will users continue to
run their own Web-enabled applications in the
Cloud rather than third-party services?6 Do the
economic scale points actually favor a relative
handful of mega-providers or should we expect to
see many smaller ones? Will organizations insist
on creating internal-use-only Clouds, just as they
have with Grids?

However, whatever the particulars of the Cloud’s
evolution, it’s clear that much more software is
moving out into the network, even if all of it
doesn’t in the foreseeable future. And that has
significant implications for Open Source.

Open Source Peaks

One implication is that we may not see Open
Source continuing to extend its reach into new
types of applications and uses to the degree that
we’ve seen to date.

The genesis of Open Source was in the operating
system and a variety of closely-related components
such as compilers. The next big step was into
middleware—application servers such as JBoss and
databases such as MySQL. Over the past few years,
we’ve also started to see more Open Source projects
that are true applications: in other words, software
that ordinary end-users—rather than developers
and system administrators—interact with.
Examples include SugarCRM (Customer
Relationship Management), JasperSoft (Business
Intelligence), and Alfresco (Content Management).

Open Source’s march to date has been on several
dimensions. It’s moved “up the stack” from the
operating system to the applications. It’s progressed
from network-facing servers back to the application

6 I.e. using Hardware as a Service (HaaS) like
Amazon’s EC2 and S3 rather than a Software as a
Service (SaaS) approach. See our Web Services Flow Down
Amazon.

tier, and even into back-end transactional
applications in some cases. It’s taken on more roles
that businesses view as mission-important, even
mission-critical. And many of the network-centric
applications where Linux got its start have
themselves become increasingly important over
time. Open Source applications touch more and
more parts of the business; they’re increasingly
judged suitable for even “high surface area”
applications—to use Kevin Efrusy’s term.7

Without other major changes to the software
universe, it would be reasonable to assume that
these trends would more or less continue. Perhaps
Open Source wouldn’t find its way into every niche
area. Open Source tends to be better suited for
software with a large community of potential
developers and, especially, users who will monetize
it at some level. But there are certainly large
swaths of horizontal application types where Open
Source still has a minimal presence.

However, the advent of Cloud Computing changes
the picture. Whatever becomes of existing IT
infrastructures over time, it’s increasingly clear
that new styles of applications are more likely to be
accessed over the network than installed on a local
server in the traditional manner. Furthermore, new
companies that don’t already have an IT
infrastructure in place are far more likely to
explore SaaS and HaaS alternatives of various
types than they are to host everything in a
homespun datacenter.

In short, the action in software is shifting. This
makes it harder for Open Source to usurp
additional roles in the enterprise datacenter because
those roles aren’t going to be in the datacenter to
usurp; they’re moving into the network.

Open Code in the Cloud

There is, of course, no reason that Open Source
cannot be used in the Cloud just as it is in the
enterprise datacenter. And, indeed, we see examples
of this. You can install the Open Source SugarCRM
on your own server; or you can also purchase a

7 See our Open Source: What Makes for Success?

single user license Gordon R Haff
Illuminata, Inc.

*07684B70CFA18BF

4

subscription to Sugar On-Demand, a hosted
version. Similar options are available for other
Open Source projects such as Trac and Wordpress.
Furthermore, if you’re using a HaaS provider, such
as Amazon, you can run any software you like—
Open Source or otherwise.

However, with respect to SaaS and Web 2.0
specifically, where neither the user nor anyone else
on the user’s side of the wire touches the software
directly, the dynamics around Open Source are—at
the least—different. Furthermore, as Tim O’Reilly
has noted, the “freedoms that led Richard Stallman
to the GPL” aren’t especially protected by current
Open Source software licenses in a Web 2.0 world.8

First, some basics. One big reason that SaaS
changes things is that most Open Source licenses—
and all the widely-used ones—don’t consider
software delivered in the form of a service as
“distributing” that software. And it’s distribution,
not use, that triggers the “copyleft” aspect of
licenses like the GPL and thereby requires that
modifications and enhancements be contributed
back to the community. Thus, so long as an
application is only accessed as a service, the
company offering that service can base it on Open
Source code and add proprietary value-add
enhancements without any requirement to make
the code for those extensions available. As far as the
GPL is concerned, the code is just being run
internally by the vendor delivering the service.

Some see this as simply a loophole—albeit an
enormous, and enormously important one. There
was, indeed, pressure from some quarters to plug it
during the drafting process of the latest GPL
license, GPLv3. However, instead, the Free Software
Foundation created a separate license, the Affero
GPL, that adds a provision to make the copyleft
terms of the GPLv3 also applicable to software
delivered in the form of a service over the network.

Such a worldview implicitly assumes that copyleft
is the only reason that Open Source users
contribute back their enhancements. Copyleft may
or may not have played a major role in the rise of

8 tinyurl.com/ypav7g

Open Source. Certainly, the GPL has long been the
most common Open Source license, used by Linux,
GNU, and many others. However, the BSD license
—which does not require that code changes be
made available—is also widely used. It’s an
interesting historical debate whether the ultimate
impact of Linux was far greater than the BSD
operating system because of license differences, or
because of other reasons—of which there were
many. In any case, Open Source does not begin and
end with the GPL and copyleft.

And that’s just looking at history. Today, Open
Source is widely embraced by all manner of
technology companies because they’ve found that,
for many purposes, Open Source is a great way to
engage with developer and user communities—and
even with competitors. Therefore, the concern that,
left to their own devices, companies will wholesale
strip-mine Open Source projects and “take it all
private” seems anachronistic. That’s not to say that
everyone will always contribute as much code
without copyleft as with it, but the suggestion that
copyleft is all that’s holding the whole Open Source
process together just doesn’t square with the facts.

Other Freedoms

At the same time, to focus on source code is to
focus on a specific type of openness and freedom
that was important historically—but may not be as
important going forward. Indeed, in the case of
Web services running on massive server farms and
cooperating over a network with all manner of
other code, services, and data, the value of code is
questionable. After all, you can hardly just load it
up on a server and do anything useful with it
anyway. One needs all those servers and
interlocking pieces. Also, the ability to view, modify,
and redistribute source code is only one of many
rights or protections to consider in a Cloud
Computing world. For example, consider these
other things that might matter more:

Ownership and portability of data. When you store
information in the Cloud, can you get it back out?
And can you get it back out in a way such that it’s
useful and portable? These questions become even

single user license Gordon R Haff
Illuminata, Inc.

*07684B70CFA18BF

5

more fraught when you consider that this is not a
simple question of downloading files that you have
stored on a disk somewhere on the network. Your
“data” may also consist of your network and
relationships to other data and people in the Cloud.
What type of portability even makes sense in that
context?

Open APIs. Open Source as we know it today
evolved largely in the context of Unix-like
operating systems and the programs that ran
directly on top of them using “libc” and other
system libraries. While we may run monolithic
programs over the network, much of the action in
Web 2.0 has been in services such as Facebook,
Flickr, Google Maps, and Salesforce.com that expose
application programming interfaces (API) at a
higher level. This allows developers considerable
freedom to extend these platforms. Thus, whether a
platform or application is Open Source or not,
given public APIs, it can be extended and consumed
in ways that are very analogous to Open Source. At
the same time, the predictability and transparency
of the terms of service for APIs—especially in the
case of consumer-oriented services—raise their
own issues.9

Privacy and security. At the O’Reilly Open Source
Conference (OSCON) last summer, Eben Moglen
of the Software Freedom Law Center referred to
Google and its ilk as a “private surveillance system
that [the government] can subpoena at will.” He
went on to describe this as a “uniquely serious
problem.” It’s hard to dispute that such services
create an unprecedented centralization of data—
both that explicitly placed into the Cloud and that
generated with each search or purchase. This is
anathema to those who saw Open Source and
inexpensive computers as a great victory for the
decentralization of computing and information.

Cribbing From Open Source

Open Source bears at most an incidental
relationship to computing in the network. It’s not
irrelevant. But that’s because Open Source-ish

9 See our Mashups Meet Commerce.

methodologies and approaches have become
pervasive in software development.

Consider a company like Adobe Systems—long
known for dominating large swaths of graphic arts
workflows with expensive, proprietary software.
Adobe has hardly become an Open Source paragon.
However, it Open Sourced Flex—its cross-platform
framework for building rich Internet applications.
And PDF, long a de facto standard for fixed-layout
document format, recently became an official ISO
standard.10 Furthermore, when Adobe released its
new Adobe Lightroom software—a competitor to
Apple’s Aperture—last year, it did so through a
long public beta that clearly influenced the
program’s final design. Thus, even though
Lightroom is not Open Source, it’s made use of
much of the same sort of community involvement
so often associated with Open Source projects. The
latest version of the program also has an SDK that
allows programmers to extend the program—
another hallmark of Open Source projects like
Firefox. And—it almost goes without saying—you
can trial the software before buying it.

Approaches such as these are hardly unique to
Adobe. They’re not even particularly new. What is
new is how ubiquitous they have become. Indeed,
they’re so ubiquitous that it’s easy to forget how
utterly alien the transparency and interactivity of
the Lightroom development process would have
seemed just a decade ago. Open Source has much to
do with that change. Even closed or private source
software borrows much from the community
models that Open Source helped to foster and tune.

Conclusion

Open Source has caused a major sea change in the
way that software is developed and consumed.
Many of the characteristics that we associate with
Web 2.0 and other computing in the Cloud—the
importance of building community, rapid

10 To be sure, Adobe’s motivation may have been partly
to counter a similar move by Microsoft as a way to
promote its competing XPS approach. See our The
Problem with Openness.

single user license Gordon R Haff
Illuminata, Inc.

*07684B70CFA18BF

TM

Through subscription research, advisory services, speaking engagements, strategic

planning, product selection assistance, and custom research, Illuminata helps

enterprises and service providers establish successful information technology.

6

incremental updates, and easy entry points—have
much in common with Open Source.

However, Cloud Computing tends not to expose
source code to users—and that’s a major departure
from Open Source which, by definition, does. Some
view this as a loophole to be closed. However, that
is to assume that viewing and modifying code is an
end to itself rather than a means to ensuring users
more fundamental rights and protections around
using software and accessing their data.

Open Source can and will coexist with Cloud
Computing. But, with dramatic changes brought by
Open Source already incorporated into many
previously closed, proprietary development
processes, it will no longer be so uniquely at the
center of the big questions around how user
freedoms are to be ensured, and how software is to
be built and delivered.

