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What’s the best way to estimate travel time? Would you rely on an estimate based 
solely on the number of lanes in the road and the sound of the engine? Nope. You 
need to know, at minimum, how far you have to travel, the condition of the road, 
and how fast you’ll likely be able to go. Obvious, right?

You’d think so. But system and networking specs rate computer performance 
according to bandwidth and clock speed, the IT equivalents of just measuring 
the width of the road and the engine’s revolutions per minute. While they may 
be interesting, even important, data points, they’re hardly the complete story. 
Not surprisingly, vendor specs show a remarkable number of gigabytes shuttling 
to and fro every second—numbers derived from theoretical peak calculations, 
not actual measures of data movement. In the real world, you have to consider 
the vital factor of 

 

latency

 

.

Latency is the time that elapses between a request for data and its delivery. It is the 
sum of the delays each component adds in processing a request. Since it applies to 
every byte or packet that travels through a system, latency is at least as important 
as bandwidth, a much-quoted spec whose importance is overrated. High bandwidth 

just means having a wide, smooth road instead of a bumpy 
country lane. Latency is the difference between 

driving it in an old pickup or a Formula One racer. 

Comparing the latency of two systems is 
tricky because access time depends heavily 

not only on configuration, but also 
dynamic variables like system load. 
What’s more, vendors often use 
different definitions. Or they report 
numbers that are variously best-case, 
worst-case, or something in-
between—without providing enough 

clarification for customers to evaluate 
which situation the numbers reflect. 

Nevertheless, even if precise numerical 
comparisons are difficult, understanding appli-

cation-level performance demands an appreciation 
for the role of latency in different architectures. 
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Powers of Ten

 

The first thing to keep in mind is how great the 
difference in latency can be from one type of compo-
nent to another, and how designers can minimize 
delays by making critical data available from reposi-
tories with the shortest lag times.

For example: A 1 GHz processor can run an opera-
tion through its execution units in a billionth of a 
second—the same amount of time it takes electricity 
to travel along a wire about seven inches long.
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 If 
the processor lacks the instructions or data to 
complete an operation, and takes one cycle to line up 
the data from an on-chip cache, that adds maybe a 
nanosecond or two of delay. If it has to retrieve data 
from memory that isn’t in the cache, it could take 
microseconds to retrieve and process. If data has to 
come from a disk drive that has to locate the data 
and send it across a significant chunk of space to the 
processor, the delay will probably be in milliseconds. 
If the data has to come from outside the machine, 
across the network, the delay could be a second, or 
more—latency at least a BILLION times greater 
than if the data were nearby. 

What’s the worry? Can’t the processor just do some-
thing else while it’s waiting for data to come in? Yes 
it can, and modern designs use all sorts of strategies 
like buffering, pre-fetch, register renaming, out-of-
order execution, and multi-threading to do useful 
work while data is being accessed. But each of these 
strategies has a cost and adds its own complexities. 
And such workarounds can only go so far. If data’s 
not handy, it’s a fact of life that execution units and 
other system resources are frequently going idle 
while waiting for the data to arrive. Latency is there-
fore a key determinant of what is achievable in 
system efficiency and performance. 

That’s why chip designers build in registers—effec-
tively very fast and specialized memory on the CPU 
itself. It’s also why caches are such a pervasive 
design element at all levels of system design. All 
communication comes with some degree of latency. 

Each task comes with its own latency requirements. 
Short latencies enable tasks that require a high 
level of coordination among different components 
and need an intimate awareness of each other’s 
actions and status. 

For example, the underlying hardware of most 
computer systems has to constantly check and take 
action to ensure all the caches and memory are in a 
consistent state. That helps keep them closely coor-
dinated, but also adds to administrative overhead. 

By contrast, the relatively long latencies found on 
public data networks mean that communications 
over them have to be relatively autonomous and 
asynchronous. It’s still necessary to check data for 
errors, but it’s not practical to hold up a stream of 
packets while the system and an application discuss 
whether the previous packet arrived successfully. 
Intra-system and on-network communications are 
like the difference between a telephone call and an 
exchange through the mail. 

The performance-profiles of clusters, systems, 
chipsets, and chips depend heavily on the distance 
and latency among components. The closer to the 
core of the processor one gets, the more intimate and 
coordinated the communications must be. Physics 
limit the options designers have to eliminate latency, 
but within specific domains, their decisions can make 
a system’s performance scream—or whimper. 

Consider the problems to be solved in two domains: 
systems and datacenters. 

 

The Memory Wall Bottleneck

 

Memory is a relatively low-latency source of data, 
but the delay that comes from writing to or reading 
from memory has been improving at a drastically 
slower pace than have CPUs.
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 Consider that, in 
1993, Pentium chips ran at a clock speed of 60 MHz 
while today a Xeon MP clocks at 1.6 GHz—almost a 

 

1. Electricity travels down a copper wire at about two-
thirds the speed of light in a vacuum.

 

2. Wm. A. Wulf and Sally A. McKee popularized this 
observation with the term “memory wall” in their 
paper “Hitting the Memory Wall: Implications of 
the Obvious.” 
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30:1 difference.
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 Not only have the number of 
cycles per second increased, but the work chips can 
do in each cycle has also increased with every major 
new chip iteration. 

By comparison, the 60 nanosecond (ns) access time 
of fast-page-mode DRAM used in the early nineties 
has dropped to about 7 ns with current PC2100 
DDR-SDRAM—about a 10:1 improvement. And 
this 

 

overstates

 

 the increase because it refers only to 
the raw memory array access time. Other factors—
such as the time data takes to get through the 
memory subsystem logic and the time to communi-
cate between the processor and the memory—
continue to limit how quickly data can be read from 
and written to memory to an even greater degree 
than the underlying memory chip hardware. The 
ratio of 10:1 is also optimistic because DDR-
SDRAM is a very fast kind of DRAM that has only 
recently begun making its way into servers. 

So processor speeds have outstripped memory 
access speeds by a factor of at least six. As a result, 
today’s processors wait an increasing number of 
cycles for the data they need—potentially sitting 
idle in the meantime. 

This relatively slow memory speed is one reason 
applications don’t get faster at the same pace that 
processor clock speeds increase. A 2 GHz processor 
is not necessarily that much faster, in terms of 
application work accomplished, than a 1 GHz 
processor. Furthermore, high-end system designs 
now include as many as 128 processors and more 
than 512 GB of memory in a single memory image. 
The infrastructure needed to support this scale—to 
shuttle instructions and data among all those 
processors and memory—adds its own latencies to 
those of the components.

Local caches can minimize the amount of data that 
has to be moved, and thereby reduce latency to 
some extent. System designers can often use faster 
memory chips for caches than they can use in main 
memory because the caches are smaller than main 

memory and therefore can economically justify 
more expensive, but faster, memory types. Caches 
also help distribute load around the system; in this 
respect they enhance effective system bandwidth as 
well as reduce latency bottlenecks. 

The small on-chip L1 caches nearest the CPU core 
can deliver data and instructions to the processor’s 
execution units in just a cycle or two—over 100 
times quicker than it can be delivered from main 
memory. Even multi-MB L2, L3, and L4 processor 
caches serve up data as much as 30 times or so faster 
than memory.
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 And the larger the system, the more 
important caches are to the performance of the 
overall system design.

But caches have limitations. They primarily benefit 
applications whose data sets fit in cache and are 
repeatedly accessed. Though many applications fit 
that description, not all do. For example, multi-
media applications may call on a server for large 
chunks of data that they use only once, before 
requesting a different chunk. This constant flow of 
fresh data tends to flush the caches almost continu-
ally, rendering them nearly useless. Indeed, because 
many designs require a processor to query the cache 
first for data it needs, such one-time data dumps can 
actually increase latency by forcing the processor to 
delay its memory requests until it has first checked 
the caches for data that they certainly don’t contain. 

However much it can accelerate performance, 
caches must be designed efficiently, a problem that 
gets more complex as the systems they’re in 
become more powerful.

 

Bigger Systems, Longer Latency?

 

Large systems require multiple large caches, but 
managing them raises its own set of issues. SMP 
(symmetrical multiprocessing) systems—including 

 

3. The ratios are much higher still on Pentium 4, for 
which common speeds approach 3 GHz. 

 

4. The different levels of cache line up in different ways 
for different chip architectures. For example, Itanium 
2’s “large” (3 MB) cache is the third level of cache in 
the architecture while in UltraSPARC III’s large (8 
MB) cache is the second level. IBM’s EXA chipsets 
and Unisys’ CMP architecture, combined with Xeon 
MP or Itanium 2, offer an unprecedented four levels 
of processor cache. 
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both uniform memory access (UMA) and Non-
Uniform Memory Access (NUMA) implementa-
tions—are “cache coherent.”
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 In the early days of 
multiprocessing, this consistency was achieved by 
using “write through” caches in which any changes 
to cache were also made to memory in a single 
operation, ensuring that both the cache write and 
the memory write completed without interference 
by other system activities. While logically simple, 
such a design approach reduced caching’s benefit by 
requiring all writes to update main memory (and 
typically locking the bus while the update was 
underway) before moving on to the next task. 

Today, more efficient caching schemes rely on 
various mechanisms to present a consistent view 
of the entire cache and memory pool, rather than 
updating memory every time the data in cache 
changes. For example, in a typical design based on 
ownership protocols, CPUs monitor the system 
address bus to see if the data address on the bus is 
the same as that in its own cache. If so, they can 
update other caches and/or memory, depending on 
whether the data is being shared among several 
caches, and whether it’s been modified relative to 
other caches or memory.

However, even the most sophisticated caching 
approaches can only reduce the number of times 
that main memory is touched. And more processors 
mean more touches on both cache and main mem–
ory, more supporting infrastructure, and more 
physical distance between processors and memory. 
Each of these increases the latency of memory 
access. That’s why a dual-processor version of HP’s 
zx1 chipset can have a memory access time of only 
about 112 ns (including latencies within the pro–
cessor) while the 32-processor version of the Unisys 
ES7000, a “classic” Big Iron crossbar design, needs 
about 300 ns—almost three times as long—just to 
traverse the interconnect to memory.

 

Scaling Both Size and Speed

 

The attack that most vendors have launched against 
the limits memory access latencies impose on scal-
ability is Non-Uniform Memory Access (NUMA) 
architectures.
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 NUMA designs are built around 
building blocks that incorporate some number of 
processors—typically four—and a portion of the 
system’s main memory.
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 The block diagram looks 
a lot like a distributed memory or MPP (massively 
parallel processing) system, but there is a critical 
distinction. All the processors in a NUMA system 
can directly access all the memory in the system, 
no matter where it is physically located. The de–
signs give software the same consistent view of 
memory and caches as does a system that imple-
ments memory as a single global pool. By contrast, 
processors in an MPP architecture only own their 
local memory.
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The advantage of a NUMA architecture is it allows 
processors to keep some memory close by, where it 
can be accessed faster than would be the case with 
centralized memory. For example, processors in 
both the Sun Fire 15K and the HP Superdome can 
access local memory on their own building blocks in 
roughly 200 ns, a full one-third faster than the 
Unisys ES7000 in which all memory sits in a single 
centralized pool. This even though the Sun box 
supports up to 72 processors (and up to 106 with 
configuration tradeoffs) and the HP system 
supports 64—compared to 32 for Unisys. 

The other side of that coin is that the Sun Fire 15K 
takes almost one-third longer than the ES7000 to 
access memory on a different board, which makes it 
even more important that applications be structured 
to use NUMA systems wisely. If an application can 
locate a chunk of logic and its associated data within 
the same block, latency for that process will be 

 

5. By contrast, more distributed architectures—such as 
MPP (massively parallel processing) computers—are 
effectively a bunch of smaller computers intercon-
nected with a high-speed network.

 

6. We have also called these nuSMP, or non-uniform 
SMP.

7. Sometimes I/O is also included as part of the building 
block; in other cases it is a centralized resource. 

8. Distributed memory architectures sometimes incor-
porate mechanisms such as RDMA to access non-
local memory, but the memory’s owner must always 
grant explicit permission. 
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much lower than if the data and logic occupied sepa-
rate blocks. IBM’s x440 NUMA system takes more 
than 50 percent longer to access memory outside a 
local block, for example. 

Data General’s AV 20000, which together with 
Sequent’s NUMA-Q pioneered the use of NUMA 
for commercial applications, had local-memory 
access speeds that are comparable to current boxes 
but had a remote access latency of 2.3 to 3.1 

 

micro-

 

seconds. That’s about a 15:1 ratio between remote 
and local accesses. By contrast, today’s systems 
typically range from approximately 2:1 to 3:1. 

Some NUMA designs are better at minimizing the 
non-local access times, however. HP’s Superdome, 
for example, averages access times on a 32-way 
system that are within 10 percent of the ES7000’s 
approximately uniform memory access times; and 
the worst-case remote-access times in IBM’s p690 
distributed switch design are essentially a wash 
with those of the Unisys platform. 

IBM’s p690 stands out by its use of a distributed-
switch architecture to deliver almost uniform 
memory access times between local and non-local 
memory. This miniscule latency delta (about 1.15:1) 
shows that the “penalty” associated with accessing 
physically distributed memory is getting smaller 
with each design iteration.

From an application perspective, the key metric is 
the average latency rather than the best or worst 
case. Vendors apply a combination of techniques to 
drive this number down, primarily by cutting down 
on the number of remote calls to memory. 

One approach is to put on each board a large cache 
that can store the data from recent remote-memory 
requests, so they are available locally for the next 
similar request. These caches, which typically range 
from 32 MB to 128 MB, can deliver data about as 
fast as can local memory. IBM’s x440 has a particu-
larly speedy version; cached remote 

 

and

 

 local refer-
ences can be accessed in just 80 ns. 

Applying OS intelligence to the problem is the 
other common approach. Scheduling techniques 
such as processor affinity and memory affinity can 

help keep processes that are being executed and 
the data they need physically close to one another, 
maximizing the percentage of accesses that are local. 
Sophisticated commercial Unix operating systems 
have had these capabilities for years—in part 
because they bring some benefit even to large-
scale systems with uniform memory access. By 
contrast, Microsoft is just in the process of adding 
that ability to Windows .NET Server. Thus, at least 
for now, systems that run Linux or Windows—such 
as IBM’s x440—are more dependent on hardware 
optimizations than their RISC/Unix counterparts, 
which have software to share the burden. 

 

The Datacenter Latency Bottleneck

 

One useful, though not wholly accurate,

 

9

 

 distinc-
tion between access inside-the-box and access 
outside-the-box used to be summarized as tightly 
coupled access vs. loosely coupled. 

Tightly coupled access means that the processor, 
cache, and memory interactions within a shared 
memory system all add up to a single, consistent 
memory view. That way, when a processor accesses 
any address in memory, it can be sure that it gets 
back data in the order that it was written—whether 
it comes from in cache or memory. It’s up to the 
hardware to make sure that even simultaneous 
actions by different processors don’t break this view. 

By contrast, loosely coupled access in distributed 
systems, such as clusters, still coordinate memory 
and data exchanges, but at a comparatively superfi-
cial level. They do have a common view of databases 
and other shared data, but don’t need to worry 
about the internal details—such as cache coher-
ency—of other systems. These designs must 
tolerate greater latency than tightly coupled 
systems, though there are ways to minimize
latency even in this design.

 

9. Some relatively long distance links such as SCI (Scal-
able Coherent Interface)—formerly used in Data 
General and Sequent NUMA systems—do support 
the coherent memory semantics associated with 
“tight coupling.”
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Even more loosely coupled are client/server in–
teractions, which typically must cross TCP/IP 
networks—anything from a local LAN to the entire 
Internet. Applications designed to run in this envi-
ronment 

 

must

 

 be latency-tolerant because even 
local hops can take 60-120 microseconds. Internet 
round trips even to nearby hosts are on the order of 
20-50 milliseconds; a traceroute to Timbuktu or 
Kathmandu often approaches a full second. 

However, loose coupling isn’t the same as no 
coupling. Clusters—multiple systems that access a 
single database, or share processing functions—
place a particular premium on streamlined coordi-
nation. Yet latency for the TCP/IP-over-Ethernet 
nets that most cluster configurations use for trans-
port is on the order of 10 to 50 times that of opti-
mized high-performance cluster connects—such as 
those that use the very low-latency Memory 
Channel interconnect in HP TruClusters. It’s no 
coincidence that TruClusters are also the only Unix-
based clusters routinely scaled to more than two 
nodes in a shared-database configuration. Past 
Compaq tests using Oracle Parallel Server (OPS)

 

10

 

 
showed about a 45 percent increase in transaction 
throughput by substituting Memory Channel for 
Ethernet-based connections. 

Interconnect latency is an even greater factor with 
the Oracle 9i RAC database—which introduced 
cache fusion, a new feature designed to eliminate 
much of the disk I/O associated with shared data-
base clustering.

 

11

 

 With cache fusion, the in-
memory cache of a nearby node serves the cluster 
data, rather than having the processor acquire data 
from disk as was the case with OPS. That’s a signifi-
cant architectural improvement because it takes 
about 10-20 milliseconds to pull data off a typical 
disk array. (Even data present in a disk array’s read 
cache takes about 2 milliseconds to retrieve.) 

However, it also means that the importance of the 
connection speed among clustered systems is even 
greater—given that the bottleneck at the disk is so 
much less than it was. 

Memory Channel isn't the only high-performance 
datacenter interconnect available; the current mar–
ket for interconnects is enormously fragmented. 
Others include Myrinet (Myricom), ServerNet 
(HP), SP Switch2 (IBM), BYNET (NCR), QsNet 
(Quadrics), HyperFabric 2 (HP), GSN (SGI), and 
cLAN (Emulex). Other than in a few specialized, 
performance-oriented niches, Ethernet remains the 
standard for system-to-system connections. IBM, 
Sun, and others vendors have been promoting the 
emerging InfiniBand standard as a broader-based 
high-performance interconnect, but there are few 
production sites as of mid-2002. 

What makes the speed of these interconnects differ 
from each other isn’t so much the type of media or 
the specifics of the hardware interface. A signal 
takes about the same length of time to get through 
the low-level physical layers of one as another. As 
standard networks grow toward 10 Gbit/sec speeds, 
the physical hardware underlying 10 Gigabit 
Ethernet, Fibre Channel, and InfiniBand looks 
increasingly similar. Indeed, the trend is toward 
making components like connectors common across 
as many different interconnect variants as possible. 

What gives the high performance datacenter inter-
connects dramatically shorter latencies than stan-
dard TCP/IP-on-Ethernet is their lack of overhead 
from software-stacks and link protocols. TCP/IP 
was designed for and remains oriented toward 
wide-area communications over inherently unreli-
able links. For example, the TCP protocol performs 
a checksum for each packet, whereas an intercon-
nect such as InfiniBand can pass the job of ensuring 
reliable transmission to the hardware in the lower 
layers. All this adds up to a huge latency difference 
between TCP/IP-over-Gigabit Ethernet compared 
to interconnects and protocols that are optimized 
for datacenter roles such as clustering.   

 

10. The parallel version of the Oracle database prior to 
the Oracle 9i release. Oracle 9i RAC replaces OPS, 
and seeks to make parallel database implementations 
much less rarefied. 

11. Polyserve uses a similar technique in its large-scale 
cluster file system.
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Example Latencies within Datacenters

 

Protocol/Transport
Typical latency 

(one-way)
Bandwidth per link 

(unidirectional)
Notes

HP Memory Channel

 

2-6 microseconds 
(as low as 2.2 micro-
seconds with native 

messaging; 6.4 micro-
seconds with MPI 

messaging)

100 MB/sec 
(sustained 

point-to-point)

A key technical ingredient for 
getting the best performance 

from Tru64 clusters.

 

SGI Gigabyte System 
Network (GSN)

 

< 10 microseconds 
(adapter)

< 30 microseconds 
(with MPI messaging)

790 MB/sec 
(typical application)

Offered by SGI as a 
premium, higher 

performance alternative 
to Myrinet.

 

InfiniBand

 

3-20 microseconds 
(native hardware 

RDMA)

2.5 GB/sec for 
4X links 

(theoretical peak)

Being promoted as a new 
interconnect standard that 

can replace both high-
performance interconnects 

and Ethernet within the 
datacenter.

 

Myricom Myrinet

 

7-9 microseconds 
(small messages)

245 MB/sec 
(sustained)

The standard for high-perfor-
mance compute clusters.

 

IBM SP Switch2

 

1 microsecond (raw)
18 microseconds 

(with MPI messaging)

500 MB/sec (raw)
350 MB/sec 
(sustained 
with MPI)

IBM’s high-performance 
switch focusing on large, 

shared-nothing clusters such 
as its SP systems. 

 

HP Hyperfabric2 

 

22 microseconds
320 MB/sec 
(raw peak)

Adds reliability features 
(e.g., reliable datagram) on 
top of Myrinet physical and 

switching layers.

 

Emulex cLAN 

 

7-40 microseconds
160 MB/sec 
(raw peak)

Hardware implementation of 
VI (TCP/IP bypass) protocol.

 

Fast and Gigabit 
Ethernet (with TCP/IP)

 

60-200+ microseconds
128 MB/sec 
(raw peak)

The default commodity stan-
dard for system-to-system 

communications.
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MEMORY
112-500ns

HIGH PERFORMANCE
CLUSTERS
3-40 s

ETHERNET
60-200 s

 

In the Blink of an Eye

 

In so many ways the IT industry is obsessed with 
speed. Frequency dominates processor discussions 
in the public eye to such a degree that AMD has 
even taken to naming processors with a megahertz 
equivalency rating—which just happens to be a 
higher number than the chip’s actual physical clock 
rate.

 

12

 

 It’s therefore a bit of an oddity that latency is 
so subordinate to bandwidth in discussions of 
speeds and feeds. 

But make no mistake—latency is a critical perfor-
mance element with implications that extend 
upwards through the software stack. To scale effec-
tively, system architectures whose memory designs 
are highly non-uniform require workarounds to 
compensate for the lower-end of their response 
ranges, including hardware features such as caches, 
and OS features such as processor affinity. And 
average memory latencies that are consistently long 
can become the primary system bottleneck across 
applications that make frequent changes to data—a 
typical characteristic of transactional environments. 

The situation is no different outside the box. Some 
types of information exchange—such as the serving 
of static Web content—can tolerate even long public 
network latencies. And remote data-synchroniza-
tion can function with one-way latencies of up to 
about 1 millisecond—equivalent to about 125 
miles—as an upper limit. However, clusters and 
multi-tier applications benefit from the speediest 
and lowest overhead communications—especially if 
they are updating data frequently as opposed to just 
reading. This requirement has spawned a plethora 
of high-speed networking links that are essential 
parts of the biggest, fastest clusters. 

That’s not to say that bandwidth, clock speed, and 
bus width are not important. Of course they are. 
Bandwidth alone ensures that the bits have wide 
open lanes down which to fly. But latency is at least 
as important. So enjoy the impressive bus and 
bandwidth numbers your vendors show you, and 
use them as part of your decision-making. But be 
sure to also ask about and understand the latencies 
involved—within a system block, among memory 
blocks, and between systems. Without knowing 
how long your processors have to wait while the 
data is being assembled, you’ll never know how fast 
they’ll actually work.

 

12. See Illuminata Note, “Server Technologies Perspec-
tives #1”, May 2002.
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