

Illuminata, Inc. • 106 Main Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0199 f • www.illuminata.com

TM

Copyright © 2002 Illuminata, Inc.

What’s the best way to estimate travel time? Would you rely on an estimate based
solely on the number of lanes in the road and the sound of the engine? Nope. You
need to know, at minimum, how far you have to travel, the condition of the road,
and how fast you’ll likely be able to go. Obvious, right?

You’d think so. But system and networking specs rate computer performance
according to bandwidth and clock speed, the IT equivalents of just measuring
the width of the road and the engine’s revolutions per minute. While they may
be interesting, even important, data points, they’re hardly the complete story.
Not surprisingly, vendor specs show a remarkable number of gigabytes shuttling
to and fro every second—numbers derived from theoretical peak calculations,
not actual measures of data movement. In the real world, you have to consider
the vital factor of

latency

.

Latency is the time that elapses between a request for data and its delivery. It is the
sum of the delays each component adds in processing a request. Since it applies to
every byte or packet that travels through a system, latency is at least as important
as bandwidth, a much-quoted spec whose importance is overrated. High bandwidth

just means having a wide, smooth road instead of a bumpy
country lane. Latency is the difference between

driving it in an old pickup or a Formula One racer.

Comparing the latency of two systems is
tricky because access time depends heavily

not only on configuration, but also
dynamic variables like system load.
What’s more, vendors often use
different definitions. Or they report
numbers that are variously best-case,
worst-case, or something in-
between—without providing enough

clarification for customers to evaluate
which situation the numbers reflect.

Nevertheless, even if precise numerical
comparisons are difficult, understanding appli-

cation-level performance demands an appreciation
for the role of latency in different architectures.

Latency Matters!

Research Note

Gordon Haff

19 September 2002

ghaff@
illuminata.com

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

Copyright © 2002 Illuminata,
Inc. Licensed to Illuminata,
Inc. for internal use only. Share
it freely within this group, but
no further. Providing its
contents to external parties,
including by excerpt or
quotation, is a violation of our
copyright and your license.
Email license@illuminata.com
for broader rights.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

2

Powers of Ten

The first thing to keep in mind is how great the
difference in latency can be from one type of compo-
nent to another, and how designers can minimize
delays by making critical data available from reposi-
tories with the shortest lag times.

For example: A 1 GHz processor can run an opera-
tion through its execution units in a billionth of a
second—the same amount of time it takes electricity
to travel along a wire about seven inches long.

1

 If
the processor lacks the instructions or data to
complete an operation, and takes one cycle to line up
the data from an on-chip cache, that adds maybe a
nanosecond or two of delay. If it has to retrieve data
from memory that isn’t in the cache, it could take
microseconds to retrieve and process. If data has to
come from a disk drive that has to locate the data
and send it across a significant chunk of space to the
processor, the delay will probably be in milliseconds.
If the data has to come from outside the machine,
across the network, the delay could be a second, or
more—latency at least a BILLION times greater
than if the data were nearby.

What’s the worry? Can’t the processor just do some-
thing else while it’s waiting for data to come in? Yes
it can, and modern designs use all sorts of strategies
like buffering, pre-fetch, register renaming, out-of-
order execution, and multi-threading to do useful
work while data is being accessed. But each of these
strategies has a cost and adds its own complexities.
And such workarounds can only go so far. If data’s
not handy, it’s a fact of life that execution units and
other system resources are frequently going idle
while waiting for the data to arrive. Latency is there-
fore a key determinant of what is achievable in
system efficiency and performance.

That’s why chip designers build in registers—effec-
tively very fast and specialized memory on the CPU
itself. It’s also why caches are such a pervasive
design element at all levels of system design. All
communication comes with some degree of latency.

Each task comes with its own latency requirements.
Short latencies enable tasks that require a high
level of coordination among different components
and need an intimate awareness of each other’s
actions and status.

For example, the underlying hardware of most
computer systems has to constantly check and take
action to ensure all the caches and memory are in a
consistent state. That helps keep them closely coor-
dinated, but also adds to administrative overhead.

By contrast, the relatively long latencies found on
public data networks mean that communications
over them have to be relatively autonomous and
asynchronous. It’s still necessary to check data for
errors, but it’s not practical to hold up a stream of
packets while the system and an application discuss
whether the previous packet arrived successfully.
Intra-system and on-network communications are
like the difference between a telephone call and an
exchange through the mail.

The performance-profiles of clusters, systems,
chipsets, and chips depend heavily on the distance
and latency among components. The closer to the
core of the processor one gets, the more intimate and
coordinated the communications must be. Physics
limit the options designers have to eliminate latency,
but within specific domains, their decisions can make
a system’s performance scream—or whimper.

Consider the problems to be solved in two domains:
systems and datacenters.

The Memory Wall Bottleneck

Memory is a relatively low-latency source of data,
but the delay that comes from writing to or reading
from memory has been improving at a drastically
slower pace than have CPUs.

2

 Consider that, in
1993, Pentium chips ran at a clock speed of 60 MHz
while today a Xeon MP clocks at 1.6 GHz—almost a

1. Electricity travels down a copper wire at about two-
thirds the speed of light in a vacuum.

2. Wm. A. Wulf and Sally A. McKee popularized this
observation with the term “memory wall” in their
paper “Hitting the Memory Wall: Implications of
the Obvious.”

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

3

30:1 difference.

3

 Not only have the number of
cycles per second increased, but the work chips can
do in each cycle has also increased with every major
new chip iteration.

By comparison, the 60 nanosecond (ns) access time
of fast-page-mode DRAM used in the early nineties
has dropped to about 7 ns with current PC2100
DDR-SDRAM—about a 10:1 improvement. And
this

overstates

 the increase because it refers only to
the raw memory array access time. Other factors—
such as the time data takes to get through the
memory subsystem logic and the time to communi-
cate between the processor and the memory—
continue to limit how quickly data can be read from
and written to memory to an even greater degree
than the underlying memory chip hardware. The
ratio of 10:1 is also optimistic because DDR-
SDRAM is a very fast kind of DRAM that has only
recently begun making its way into servers.

So processor speeds have outstripped memory
access speeds by a factor of at least six. As a result,
today’s processors wait an increasing number of
cycles for the data they need—potentially sitting
idle in the meantime.

This relatively slow memory speed is one reason
applications don’t get faster at the same pace that
processor clock speeds increase. A 2 GHz processor
is not necessarily that much faster, in terms of
application work accomplished, than a 1 GHz
processor. Furthermore, high-end system designs
now include as many as 128 processors and more
than 512 GB of memory in a single memory image.
The infrastructure needed to support this scale—to
shuttle instructions and data among all those
processors and memory—adds its own latencies to
those of the components.

Local caches can minimize the amount of data that
has to be moved, and thereby reduce latency to
some extent. System designers can often use faster
memory chips for caches than they can use in main
memory because the caches are smaller than main

memory and therefore can economically justify
more expensive, but faster, memory types. Caches
also help distribute load around the system; in this
respect they enhance effective system bandwidth as
well as reduce latency bottlenecks.

The small on-chip L1 caches nearest the CPU core
can deliver data and instructions to the processor’s
execution units in just a cycle or two—over 100
times quicker than it can be delivered from main
memory. Even multi-MB L2, L3, and L4 processor
caches serve up data as much as 30 times or so faster
than memory.

4

 And the larger the system, the more
important caches are to the performance of the
overall system design.

But caches have limitations. They primarily benefit
applications whose data sets fit in cache and are
repeatedly accessed. Though many applications fit
that description, not all do. For example, multi-
media applications may call on a server for large
chunks of data that they use only once, before
requesting a different chunk. This constant flow of
fresh data tends to flush the caches almost continu-
ally, rendering them nearly useless. Indeed, because
many designs require a processor to query the cache
first for data it needs, such one-time data dumps can
actually increase latency by forcing the processor to
delay its memory requests until it has first checked
the caches for data that they certainly don’t contain.

However much it can accelerate performance,
caches must be designed efficiently, a problem that
gets more complex as the systems they’re in
become more powerful.

Bigger Systems, Longer Latency?

Large systems require multiple large caches, but
managing them raises its own set of issues. SMP
(symmetrical multiprocessing) systems—including

3. The ratios are much higher still on Pentium 4, for
which common speeds approach 3 GHz.

4. The different levels of cache line up in different ways
for different chip architectures. For example, Itanium
2’s “large” (3 MB) cache is the third level of cache in
the architecture while in UltraSPARC III’s large (8
MB) cache is the second level. IBM’s EXA chipsets
and Unisys’ CMP architecture, combined with Xeon
MP or Itanium 2, offer an unprecedented four levels
of processor cache.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

Ac
ce

ss
Ti

m
e

(n
s)

a

0
5

25
15

75

25
0

37
5

50
0

12
5

62
5

Ca
ch

es

It
an

iu
m

 2
 (1

 G
Hz

):
 L

1
ca

ch
e,

 o
n-

ch
ip

Ul
tr

aS
PA

RC
 II

I C
u

(1
.0

5
GH

z)
: L

1
da

ta
 c

ac
he

, o
n-

ch
ip

It
an

iu
m

 2
 (1

 G
Hz

):
 L

2
ca

ch
e,

 o
n-

ch
ip

It
an

iu
m

 2
 (1

 G
Hz

):
 L

3
ca

ch
e

(o
n-

ch
ip

)

Ul
tr

aS
PA

RC
 II

I C
u

(1
.0

5
GH

z)
: L

oc
al

 (b
ut

 o
ff

-c
hi

p)
 L

2
ca

ch
e

IB
M

 e
Se

rv
er

 p
Se

rie
s

69
0

w
/ 1

.3
 G

Hz
 P

OW
ER

4:
 L

3
ca

ch
e

IB
M

 e
Se

rie
s

xS
er

ie
s

44
0

w
/ 1

.6
 G

Hz
 X

eo
n

M
P:

 L
4

ca
ch

e

Un
is

ys
 E

S7
00

0
w

/ 1
 G

Hz
 It

an
iu

m
 2

: S
ha

re
d

ca
ch

e
(L

4)

M
em

or
y

HP
 S

ca
la

bl
e

Ch
ip

se
t z

x1
 w

/o
 m

em
or

y
hu

b
(a

ve
ra

ge
)

Su
n

Fi
re

 1
5K

: L
oc

al
 m

em
or

y
(t

yp
ic

al
)

HP
 S

up
er

do
m

e:
 L

oc
al

 m
em

or
y

(a
ve

ra
ge

)

IB
M

 e
Se

rv
er

 x
Se

rie
s

44
0:

 L
oc

al
 m

em
or

y

IB
M

 e
Se

rv
er

 p
Se

rie
s

69
0

Lo
ca

l m
em

or
y

(w
or

st
-c

as
e)

IB
M

 e
Se

rv
er

 p
Se

rie
s

69
0:

 R
em

ot
e

m
em

or
y

(w
or

st
-c

as
e)

Su
n

Fi
re

 1
5K

: R
em

ot
e

m
em

or
y

(t
yp

ic
al

)

HP
 S

up
er

do
m

e:
 6

4-
 C

PU
 s

ys
te

m
 (a

ve
ra

ge
)

IB
M

 e
Se

rv
er

 x
Se

rie
s

44
0:

 R
em

ot
e

m
em

or
y

Su
n

Fi
re

 1
5K

: C
ac

he
 o

n
re

m
ot

e
bo

ar
d

(w
or

st
-c

as
e)

b

Ex
am

pl
e

La
te

nc
ie

s w
ith

in
 S

ys
te

m
s

a.

D
o

no
t

us
e

th
is

 d
ia

gr
am

 t
o

ca
lib

ra
te

 m
ed

ic
al

 in
st

ru
m

en
ts

 o
r

ot
he

r
de

vi
ce

s
re

qu
ir

in
g

ex
tr

em
e

pr
ec

is
io

n.
 L

og
ar

it
hm

ic
 p

ro
gr

es
si

on
, n

ot
 t

o
lin

ea
r

sc
al

e.
 H

P
an

d
IB

M

m
em

or
y

la
te

nc
ie

s
ar

e
“l

oa
d-

to
-u

se
”

nu
m

be
rs

 t
ha

t
ex

pl
ic

it
ly

 in
cl

ud
e

la
te

nc
ie

s
w

it
hi

n
th

e
pr

oc
es

so
r

(~
58

 n
s

in
 t

he
 c

as
e

of
 P

A
-R

IS
C

)
w

hi
le

 S
un

’s
 “

pi
n-

to
-p

in
”

la
te

nc
ie

s
do

 n
ot

.

b.

W
he

n
a

m
em

or
y

lo
ca

ti
on

 is
 o

w
ne

d
by

 a
no

th
er

 C
PU

 a
nd

 t
he

 c
ur

re
nt

 v
al

ue
 o

f
th

e
da

ta
 is

 in
 o

ne
 o

f
th

at
 C

PU
's

 c
ac

he
s

(i
.e

.,
m

em
or

y
ha

s
th

e
ol

d
va

lu
e

of
 t

he
 c

ac
he

lin
e)

, t
he

 d
at

a
ha

s
to

 c
om

e
fr

om
 t

he
 o

w
ni

ng
 C

PU
, r

at
he

r
th

an
 f

ro
m

 m
em

or
y.

 T
hi

s
op

er
at

io
n

ca
n

ta
ke

 lo
ng

er
 t

ha
n

re
tr

ie
vi

ng
 d

at
a

fr
om

 “
cl

ea
n”

 m
em

or
y.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

5

both uniform memory access (UMA) and Non-
Uniform Memory Access (NUMA) implementa-
tions—are “cache coherent.”

5

 In the early days of
multiprocessing, this consistency was achieved by
using “write through” caches in which any changes
to cache were also made to memory in a single
operation, ensuring that both the cache write and
the memory write completed without interference
by other system activities. While logically simple,
such a design approach reduced caching’s benefit by
requiring all writes to update main memory (and
typically locking the bus while the update was
underway) before moving on to the next task.

Today, more efficient caching schemes rely on
various mechanisms to present a consistent view
of the entire cache and memory pool, rather than
updating memory every time the data in cache
changes. For example, in a typical design based on
ownership protocols, CPUs monitor the system
address bus to see if the data address on the bus is
the same as that in its own cache. If so, they can
update other caches and/or memory, depending on
whether the data is being shared among several
caches, and whether it’s been modified relative to
other caches or memory.

However, even the most sophisticated caching
approaches can only reduce the number of times
that main memory is touched. And more processors
mean more touches on both cache and main mem–
ory, more supporting infrastructure, and more
physical distance between processors and memory.
Each of these increases the latency of memory
access. That’s why a dual-processor version of HP’s
zx1 chipset can have a memory access time of only
about 112 ns (including latencies within the pro–
cessor) while the 32-processor version of the Unisys
ES7000, a “classic” Big Iron crossbar design, needs
about 300 ns—almost three times as long—just to
traverse the interconnect to memory.

Scaling Both Size and Speed

The attack that most vendors have launched against
the limits memory access latencies impose on scal-
ability is Non-Uniform Memory Access (NUMA)
architectures.

6

 NUMA designs are built around
building blocks that incorporate some number of
processors—typically four—and a portion of the
system’s main memory.

7

 The block diagram looks
a lot like a distributed memory or MPP (massively
parallel processing) system, but there is a critical
distinction. All the processors in a NUMA system
can directly access all the memory in the system,
no matter where it is physically located. The de–
signs give software the same consistent view of
memory and caches as does a system that imple-
ments memory as a single global pool. By contrast,
processors in an MPP architecture only own their
local memory.

8

The advantage of a NUMA architecture is it allows
processors to keep some memory close by, where it
can be accessed faster than would be the case with
centralized memory. For example, processors in
both the Sun Fire 15K and the HP Superdome can
access local memory on their own building blocks in
roughly 200 ns, a full one-third faster than the
Unisys ES7000 in which all memory sits in a single
centralized pool. This even though the Sun box
supports up to 72 processors (and up to 106 with
configuration tradeoffs) and the HP system
supports 64—compared to 32 for Unisys.

The other side of that coin is that the Sun Fire 15K
takes almost one-third longer than the ES7000 to
access memory on a different board, which makes it
even more important that applications be structured
to use NUMA systems wisely. If an application can
locate a chunk of logic and its associated data within
the same block, latency for that process will be

5. By contrast, more distributed architectures—such as
MPP (massively parallel processing) computers—are
effectively a bunch of smaller computers intercon-
nected with a high-speed network.

6. We have also called these nuSMP, or non-uniform
SMP.

7. Sometimes I/O is also included as part of the building
block; in other cases it is a centralized resource.

8. Distributed memory architectures sometimes incor-
porate mechanisms such as RDMA to access non-
local memory, but the memory’s owner must always
grant explicit permission.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

6

much lower than if the data and logic occupied sepa-
rate blocks. IBM’s x440 NUMA system takes more
than 50 percent longer to access memory outside a
local block, for example.

Data General’s AV 20000, which together with
Sequent’s NUMA-Q pioneered the use of NUMA
for commercial applications, had local-memory
access speeds that are comparable to current boxes
but had a remote access latency of 2.3 to 3.1

micro-

seconds. That’s about a 15:1 ratio between remote
and local accesses. By contrast, today’s systems
typically range from approximately 2:1 to 3:1.

Some NUMA designs are better at minimizing the
non-local access times, however. HP’s Superdome,
for example, averages access times on a 32-way
system that are within 10 percent of the ES7000’s
approximately uniform memory access times; and
the worst-case remote-access times in IBM’s p690
distributed switch design are essentially a wash
with those of the Unisys platform.

IBM’s p690 stands out by its use of a distributed-
switch architecture to deliver almost uniform
memory access times between local and non-local
memory. This miniscule latency delta (about 1.15:1)
shows that the “penalty” associated with accessing
physically distributed memory is getting smaller
with each design iteration.

From an application perspective, the key metric is
the average latency rather than the best or worst
case. Vendors apply a combination of techniques to
drive this number down, primarily by cutting down
on the number of remote calls to memory.

One approach is to put on each board a large cache
that can store the data from recent remote-memory
requests, so they are available locally for the next
similar request. These caches, which typically range
from 32 MB to 128 MB, can deliver data about as
fast as can local memory. IBM’s x440 has a particu-
larly speedy version; cached remote

and

 local refer-
ences can be accessed in just 80 ns.

Applying OS intelligence to the problem is the
other common approach. Scheduling techniques
such as processor affinity and memory affinity can

help keep processes that are being executed and
the data they need physically close to one another,
maximizing the percentage of accesses that are local.
Sophisticated commercial Unix operating systems
have had these capabilities for years—in part
because they bring some benefit even to large-
scale systems with uniform memory access. By
contrast, Microsoft is just in the process of adding
that ability to Windows .NET Server. Thus, at least
for now, systems that run Linux or Windows—such
as IBM’s x440—are more dependent on hardware
optimizations than their RISC/Unix counterparts,
which have software to share the burden.

The Datacenter Latency Bottleneck

One useful, though not wholly accurate,

9

 distinc-
tion between access inside-the-box and access
outside-the-box used to be summarized as tightly
coupled access vs. loosely coupled.

Tightly coupled access means that the processor,
cache, and memory interactions within a shared
memory system all add up to a single, consistent
memory view. That way, when a processor accesses
any address in memory, it can be sure that it gets
back data in the order that it was written—whether
it comes from in cache or memory. It’s up to the
hardware to make sure that even simultaneous
actions by different processors don’t break this view.

By contrast, loosely coupled access in distributed
systems, such as clusters, still coordinate memory
and data exchanges, but at a comparatively superfi-
cial level. They do have a common view of databases
and other shared data, but don’t need to worry
about the internal details—such as cache coher-
ency—of other systems. These designs must
tolerate greater latency than tightly coupled
systems, though there are ways to minimize
latency even in this design.

9. Some relatively long distance links such as SCI (Scal-
able Coherent Interface)—formerly used in Data
General and Sequent NUMA systems—do support
the coherent memory semantics associated with
“tight coupling.”

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

7

Even more loosely coupled are client/server in–
teractions, which typically must cross TCP/IP
networks—anything from a local LAN to the entire
Internet. Applications designed to run in this envi-
ronment

must

 be latency-tolerant because even
local hops can take 60-120 microseconds. Internet
round trips even to nearby hosts are on the order of
20-50 milliseconds; a traceroute to Timbuktu or
Kathmandu often approaches a full second.

However, loose coupling isn’t the same as no
coupling. Clusters—multiple systems that access a
single database, or share processing functions—
place a particular premium on streamlined coordi-
nation. Yet latency for the TCP/IP-over-Ethernet
nets that most cluster configurations use for trans-
port is on the order of 10 to 50 times that of opti-
mized high-performance cluster connects—such as
those that use the very low-latency Memory
Channel interconnect in HP TruClusters. It’s no
coincidence that TruClusters are also the only Unix-
based clusters routinely scaled to more than two
nodes in a shared-database configuration. Past
Compaq tests using Oracle Parallel Server (OPS)

10

showed about a 45 percent increase in transaction
throughput by substituting Memory Channel for
Ethernet-based connections.

Interconnect latency is an even greater factor with
the Oracle 9i RAC database—which introduced
cache fusion, a new feature designed to eliminate
much of the disk I/O associated with shared data-
base clustering.

11

 With cache fusion, the in-
memory cache of a nearby node serves the cluster
data, rather than having the processor acquire data
from disk as was the case with OPS. That’s a signifi-
cant architectural improvement because it takes
about 10-20 milliseconds to pull data off a typical
disk array. (Even data present in a disk array’s read
cache takes about 2 milliseconds to retrieve.)

However, it also means that the importance of the
connection speed among clustered systems is even
greater—given that the bottleneck at the disk is so
much less than it was.

Memory Channel isn't the only high-performance
datacenter interconnect available; the current mar–
ket for interconnects is enormously fragmented.
Others include Myrinet (Myricom), ServerNet
(HP), SP Switch2 (IBM), BYNET (NCR), QsNet
(Quadrics), HyperFabric 2 (HP), GSN (SGI), and
cLAN (Emulex). Other than in a few specialized,
performance-oriented niches, Ethernet remains the
standard for system-to-system connections. IBM,
Sun, and others vendors have been promoting the
emerging InfiniBand standard as a broader-based
high-performance interconnect, but there are few
production sites as of mid-2002.

What makes the speed of these interconnects differ
from each other isn’t so much the type of media or
the specifics of the hardware interface. A signal
takes about the same length of time to get through
the low-level physical layers of one as another. As
standard networks grow toward 10 Gbit/sec speeds,
the physical hardware underlying 10 Gigabit
Ethernet, Fibre Channel, and InfiniBand looks
increasingly similar. Indeed, the trend is toward
making components like connectors common across
as many different interconnect variants as possible.

What gives the high performance datacenter inter-
connects dramatically shorter latencies than stan-
dard TCP/IP-on-Ethernet is their lack of overhead
from software-stacks and link protocols. TCP/IP
was designed for and remains oriented toward
wide-area communications over inherently unreli-
able links. For example, the TCP protocol performs
a checksum for each packet, whereas an intercon-
nect such as InfiniBand can pass the job of ensuring
reliable transmission to the hardware in the lower
layers. All this adds up to a huge latency difference
between TCP/IP-over-Gigabit Ethernet compared
to interconnects and protocols that are optimized
for datacenter roles such as clustering.

10. The parallel version of the Oracle database prior to
the Oracle 9i release. Oracle 9i RAC replaces OPS,
and seeks to make parallel database implementations
much less rarefied.

11. Polyserve uses a similar technique in its large-scale
cluster file system.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

8

Example Latencies within Datacenters

Protocol/Transport
Typical latency

(one-way)
Bandwidth per link

(unidirectional)
Notes

HP Memory Channel

2-6 microseconds
(as low as 2.2 micro-
seconds with native

messaging; 6.4 micro-
seconds with MPI

messaging)

100 MB/sec
(sustained

point-to-point)

A key technical ingredient for
getting the best performance

from Tru64 clusters.

SGI Gigabyte System
Network (GSN)

< 10 microseconds
(adapter)

< 30 microseconds
(with MPI messaging)

790 MB/sec
(typical application)

Offered by SGI as a
premium, higher

performance alternative
to Myrinet.

InfiniBand

3-20 microseconds
(native hardware

RDMA)

2.5 GB/sec for
4X links

(theoretical peak)

Being promoted as a new
interconnect standard that

can replace both high-
performance interconnects

and Ethernet within the
datacenter.

Myricom Myrinet

7-9 microseconds
(small messages)

245 MB/sec
(sustained)

The standard for high-perfor-
mance compute clusters.

IBM SP Switch2

1 microsecond (raw)
18 microseconds

(with MPI messaging)

500 MB/sec (raw)
350 MB/sec
(sustained
with MPI)

IBM’s high-performance
switch focusing on large,

shared-nothing clusters such
as its SP systems.

HP Hyperfabric2

22 microseconds
320 MB/sec
(raw peak)

Adds reliability features
(e.g., reliable datagram) on
top of Myrinet physical and

switching layers.

Emulex cLAN

7-40 microseconds
160 MB/sec
(raw peak)

Hardware implementation of
VI (TCP/IP bypass) protocol.

Fast and Gigabit
Ethernet (with TCP/IP)

60-200+ microseconds
128 MB/sec
(raw peak)

The default commodity stan-
dard for system-to-system

communications.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

9

MEMORY
112-500ns

HIGH PERFORMANCE
CLUSTERS
3-40 s

ETHERNET
60-200 s

In the Blink of an Eye

In so many ways the IT industry is obsessed with
speed. Frequency dominates processor discussions
in the public eye to such a degree that AMD has
even taken to naming processors with a megahertz
equivalency rating—which just happens to be a
higher number than the chip’s actual physical clock
rate.

12

 It’s therefore a bit of an oddity that latency is
so subordinate to bandwidth in discussions of
speeds and feeds.

But make no mistake—latency is a critical perfor-
mance element with implications that extend
upwards through the software stack. To scale effec-
tively, system architectures whose memory designs
are highly non-uniform require workarounds to
compensate for the lower-end of their response
ranges, including hardware features such as caches,
and OS features such as processor affinity. And
average memory latencies that are consistently long
can become the primary system bottleneck across
applications that make frequent changes to data—a
typical characteristic of transactional environments.

The situation is no different outside the box. Some
types of information exchange—such as the serving
of static Web content—can tolerate even long public
network latencies. And remote data-synchroniza-
tion can function with one-way latencies of up to
about 1 millisecond—equivalent to about 125
miles—as an upper limit. However, clusters and
multi-tier applications benefit from the speediest
and lowest overhead communications—especially if
they are updating data frequently as opposed to just
reading. This requirement has spawned a plethora
of high-speed networking links that are essential
parts of the biggest, fastest clusters.

That’s not to say that bandwidth, clock speed, and
bus width are not important. Of course they are.
Bandwidth alone ensures that the bits have wide
open lanes down which to fly. But latency is at least
as important. So enjoy the impressive bus and
bandwidth numbers your vendors show you, and
use them as part of your decision-making. But be
sure to also ask about and understand the latencies
involved—within a system block, among memory
blocks, and between systems. Without knowing
how long your processors have to wait while the
data is being assembled, you’ll never know how fast
they’ll actually work.

12. See Illuminata Note, “Server Technologies Perspec-
tives #1”, May 2002.

internal use only Gordon R Haff
Illuminata, Inc.

7c4d5b48729995f3

TM

Through subscription research, advisory services, speaking engagements, strategic

planning, product selection assistance, and custom research, Illuminata helps

enterprises and service providers establish successful infrastructure in five key areas:

Server Technologies, Information Logistics, Application Strategies,

Enterprise Management, and Pervasive Automation.

