
Illuminata, Inc. • 4 Water Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0198 • www.illuminata.com

TM

Research Note

Gordon Haff
11 January 2008

The Future of the
Operating System?

Often, when something has been around for a long time, we start to think of it as
just immutably part of the way things are. Part of it is habit and familiarity. Are a
keyboard and mouse truly the best way to interact with our (non-gaming)
computers? Maybe yes, maybe no. But radically different input devices tend to feel
odd. And most people don’t like odd.

It’s also the case that the whole technology ecosystem resists fundamental changes
to the way we do things. Technology products plug together in certain ways and in
particular places. The whole vendor landscape often has to go through wrenching
change to alter these relationships. Consider, for example, the evolution from the
largely vertically-integrated computer industry that was the model until the mid-
1980s or so to today’s much more horizontally-oriented one.1

The operating system (OS) is an example of technology that has existed in
essentially its current form for at least thirty
years—and in recognizable garb for longer
than that. During that time, OSs have
gotten more sophisticated,
gained nicer interfaces, and
generally subsumed more
and more functions that
were once handled by
separate products over time.
Today’s OSs are also far
more likely to have been
written by someone other
than the system
manufacturer than was the
historical norm.

However, the basic architecture of
an OS hasn’t much changed. It’s software that runs on top of a computer system2

and provides services for applications—which are what users actually care about.
This historical structure continues to have a lot of implications for how

1 That is, today, chips, software, servers, and so on are more likely to come from a variety
of sources (even if someone—such as a system vendor—integrates them all together for
customers).

2 This note concentrates on, and gives examples from, the server world, but most of the
same principles apply to client devices as well.

Copyright © 2008 Illuminata, Inc.

ghaff@
illuminata.com

single user license Gordon R Haff
Illuminata, Inc.

Personally licensed to
Gordon R Haff of
Illuminata, Inc. for your
personal education and
individual work functions.
Providing its contents to
external parties, including
by quotation, violates our
copyright and is expressly
forbidden.

*095B83E5B03E297

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

2

applications are developed and qualified, how
systems are managed, and how the vendor
landscape is populated.

But we’re starting to see changes that affect how
the operating system relates to other pieces of the
hardware and software stack. Which means that
everything that’s largely the result of the OS’s
being like-it-always-has-been is increasingly
subject to change.

An Historical Perspective

The first computers didn’t even have operating
systems. Users ran programs that controlled the
entire machine and explicitly told the hardware
how to perform calculations or do other tasks. The
first operating system is generally considered to be
the GM-NAA I/O system created in 1956 by Bob
Patrick of General Motors and Owen Mock of
North American Aviation for the IBM 704
mainframe. A lot of things were left as an exercise
for the users in the early days. GM-NAA I/O, its
successors like SHARE, and other early OSs were
all written by customers. Even after vendors started
to develop OSs on their own—for example, IBM
released the FORTRAN Monitoring System (FMS)
and then IBSYS based on the earlier SHARE work
—OSs and other software tended to be fairly
specific to a given model of computer.

Over time, operating systems became more and
more sophisticated. This evolution was, in part, to
help programs make use of increasingly
sophisticated hardware. For example, the operating
systems that IBM developed for the System/3603

added the concept of multitasking—the ability to
rapidly switch among multiple tasks—as a way of
coping with the disparity between an increasingly
speedy CPU and relatively slow storage
peripherals.4 Another thread of OS development
began in the early 1960s when the Compatible
Time-Sharing System (CTSS) was developed at
MIT. The successor to CTSS, MULTICS, was a

3 As famously chronicled by Frederick Brooks in The
Mythical Man-Month.

4 A performance issue that remains with us today in
spite of immensely faster components everywhere.

commercial failure, but it paved the way for
important future products and technologies,
including Unix.5

The history of Unix can (and has) filled books.
There was also a plethora of operating systems for
various minicomputers that evolved somewhat in
parallel with Unix (and would largely be displaced
by it). These included Digital’s VMS (now owned
by HP and called OpenVMS), Data General’s
AOS/VS, HP’s MPE, Prime’s PRIMOS, and so
forth. However, by about the late 1970s a certain
pattern had emerged that wouldn’t really change
until Windows and, later, Linux started to see
widespread commercial use. Namely, each vendor
had one, or a few, operating systems that ran across
one or more of their product lines and that were
specific to their own hardware. Even the adoption
of Unix didn’t alter this reality much—given that
the “Unix Wars” resulted in a plethora of Unix
versions that were similar—but not completely
compatible.

Windows and Linux changed all that—in some
respects. Now, one could obtain third-party
operating systems that could run across gear
sourced from multiple vendors. However, both a
cause and a consequence of these third-party OSs is
that there’s much less variety in the underlying
hardware.6 For example, Windows runs only on
x86, which is also far and away the most common
processor architecture used to run Linux.

Yet, even the advent of mass market OSs for the
server market hasn’t really changed the
fundamental nature of the operating system—
which still has much in common with VMS and its
relatives and, to an even greater degree, the
proprietary Unixes. This probably shouldn’t be
especially surprising. After all, Linux is very much
a member of the family of Unix operating systems;
its innovation stems far more from collaborative

5 See our z/VM: Teddy Bears and Penguins.
6 Of course, there are many factors at play here

including the greatly increased capital requirements
to build modern microprocessors and the fact that
middleware and other software is also now more
likely to come from an independent software vendor
than the company that built the server.

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

3

development and acceptance by a wide
range of vendors than any fundamental
advance of operating system design.
Windows NT and its successors were also
clearly inspired by operating systems like
VMS.7 Again, Windows has always been
notable—and remains so today—far more
because of the volume economics
associated with it than because it’s an
especially interesting or unique product
from a technical perspective.

What is an Operating System Anyway?

So what is this operating system thing
that hasn’t changed much, exactly?

I could approach this question from an architectural
perspective. The core of an operating system is its
“kernel”—the part that handles the management
of computing processes and their use of memory.
Over the years, OS kernels have grown to also
encompass file systems, networking stacks, and
access control mechanisms. However, we often use
the “operating system” term to also include
everything from graphical user interfaces (GUI) to
file manager utilities to Windows Solitaire. This
expanded set of functions and utilities also
sometimes goes by the “operating environment”
moniker, although that terminology has never
caught on in a widespread way. By way of concrete
example, “Linux” properly refers only to the Linux
kernel but, in practice, is widely used to encompass
all the “stuff” that comes in a typical distribution.8

However, for reasons that will become clear, I think
it’s more useful to view operating systems in the
context of the basic functions that they provide.

The first function is to communicate with, and
abstract, the underlying hardware. In this, the OS
works hand-in-hand with various system hardware
and standards for the hardware itself. Thus, higher

7 Dave Cutler was heavily involved in the design of
both as described in G. Zachary Taylor’s Show
Stopper!: The Breakneck Race to Create Windows NT
and the Next Generation at Microsoft.

8 I discuss this in the context of OpenSolaris and
“Project Indiana” in our A Better Linux Than Linux.

levels of the software stack don’t especially need to
concern themselves with which chips QLogic
decided to use in its latest disk controller; instead
they talk to a device driver in a well-defined,
largely standardized way. The OS is also very
involved with handling a lot of the basic
management of processes and memory so that, for
example, application programs don’t typically
worry about where exactly on the physical server
their instructions are executing, or on what disk
drive, platter, and sector their data are stored.

Another function of an operating system is to
provide services to applications. These services
might include a TCP/IP networking stack or system
libraries for programs written in a compiled
language such as C++. One important aspect of
these services is that they stay relatively consistent
and stable. Put another way, they constitute a sort
of “contract” for applications that run on top.
There’s effectively a promise that if you write a
program to the defined operating system interfaces
things will still work even if you install a new
device driver for a new type of storage device or if
you double the number of processors.9

Finally, operating systems as we usually think of
them provide a wide range of utilities and other

9 This is a bit idealized, of course. Operating systems
do change over time—especially when making major
technology transitions—but backward compatibility
is still an important goal.

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

4

applications to manage various aspects of system
operation, provide convenient ways to carry out
various administrative tasks, tune performance, and
generally offer a handy general-purpose toolset to
augment more task-specific or in-depth software
obtained from third parties. These are the broader
set of components associated with the operating
environment described earlier; some—such as GUIs
—also are effectively part of the application
contract to at least a subset of applications.

The Virtualization Game Changer

With that as prelude, it’s apparent that the OS isn’t
one thing but, rather, several things that are unified
more for reasons of past practice and convenience
than technology imperative. System vendors
originally built operating systems the way they did
because they had to build all the software below the
application layer anyway. Even after third-party
operating systems became important parts of the
market mix, they largely mimicked the existing
structure.

Now, consider this.

The first function of the OS that I described—
abstracting and communicating with the hardware
—sounds a lot like another piece of technology
that’s become popular of late: the hypervisor layer
that underlies virtual machines.

Because the hypervisor is the code that is actually
sitting directly on top of the server and controlling
it, the hypervisor implements a lot of the low-level
hardware resource management that the OS
historically had to handle on its own. A hypervisor
also adds capabilities that most operating systems
didn’t traditionally have—specifically the ability to
itself host a number of isolated OS instances and
their associated applications.10 Partly as a
consequence, a hypervisor also presents a more
abstracted view of hardware to the higher layers.
For example, “virtual CPUs” and “virtual NICs”
don’t need to correspond to the quantity of physical

10 See our The Server Virtualization Bazaar, Circa 2007 for a more
detailed discussion of virtual machines and other
forms of virtualization.

hardware actually present. They also strive to be as
generic as possible—although, in practice, the
desire to completely abstract the underlying
hardware has to be balanced against the desire to
take advantage of existing driver software, vendor-
specific hardware acceleration, and other features.

One significant implication of all this is that the
“operating systems” that sit on top of a hypervisor
don’t necessarily have to be OSs in the traditional
vein, because the hypervisor is already handling
many of the tasks associated with scheduling and
other functions associated with the physical
hardware. Rather, the OS running atop a
hypervisor can major in just providing system
services for applications.

This is hardly a theory any more. Linux on the
mainframe, running under z/VM, uses precisely
this approach. Linux scalability has improved
greatly over the past decade, but still can’t hold a
candle to the biggest of the Big Iron operating
systems. But under z/VM, it doesn’t have to. The
z/VM foundation (and a lot of support by and for
System z hardware) does almost all the “heavy
lifting.” Linux primarily provides the application
abstraction—the environment that developers and
customers want to use, so that they bring their
applications on board.11

Taken to its logical extreme, one can even imagine
specialized OSs that provide a well-defined subset
of services for specific applications—the idea being
that a stripped down OS tailored to a specific
purpose could have a smaller footprint and be more
efficient than the historical general-purpose OS
that had to be prepared to do anything. This sort of
architecture isn’t wholly theoretical even today.
BEA’s LiquidVM—a virtualization-enabled version
of BEA’s JRockit JVM—can run directly on top of
VMware’s ESX Server without a conventional OS
present. BEA claims performance boosts of up to 40
percent relative to running a JVM on top of a
standard operating system.

11 See our z/VM: Teddy Bears and Penguins

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

5

Virtual Appliances

There’s also another aspect to how virtualization
plays into the future of the operating system:
virtual appliances.

Normally, we install applications on top of
operating systems whether that operating system is
running on bare metal or within a VM. Installation
typically involves copying files, creating directory
structures, adapting to the physical and software
environment of the host, telling operating system
resources (such as menus, environment variables,
or registry settings) about the new program, and
giving the user the opportunity to customize some
settings. Installation can be a complicated and time-
consuming process—all the more so when software
depends on other software (perhaps even specific
versions of that other software) to function. For
example, a Windows program might require a
specific version of the .NET framework. Linux or
Unix installations often require various language
compilers or interpreters, databases, templating
systems, and so forth.

Virtual appliances offer an alternative. The idea is
that a software vendor can take its application, the
operating system it runs on, and all of the required
supporting programs, libraries, and what have you;
configure the whole mess properly; and then write
it out to disk, ready to be fired up as a self-
contained, ready-to-run virtual machine. Thus
there’s no need for the end-user to install anything
other than the simple virtual appliance. The app
comes packaged together with whatever else it
needs to run—including OS.

No doubt appliances have been oversold at times—
never more so than during the first Internet boom
when some envisioned that hardware appliances
would replace general purpose servers for running
everything from databases to email.12 And, even
with infinitely “softer” and more transportable
virtual appliances, the fundamental appliance
concept implicitly assumes that appliance images
don’t have to routinely be modified, patched, or
tweaked, in which case the “just fire it up in a

12 See our The End of Cobalt and the Appliance Era that Never Was.

virtual machine” promise starts to ring a bit hollow.
Still, some types of applications (such as firewalls
and web servers) can indeed be quite standard—at
least within a given enterprise—and others have
such truly ugly dependency sets that anything
providing at least some simplification is welcome.13

What makes virtual appliances relevant to this
discussion, however, is that they effectively
subsume the OS. In a virtual appliance, you can
think of the operating system as just part of the
“stuff” that the application needs to run on top of a
hypervisor. At least in principle, the user shouldn’t
really need to care about the details of that OS any
more than you care what operating system your
Linksys router or your car’s GPS is running.

In this view, the operating system in a virtual
appliance is a JeOS (“Just enough OS”), a
customized operating system that’s been tailored to
the needs of the specific application. At the same
time, a JeOS running atop a hypervisor could also
potentially jettison the parts that the hypervisor
makes redundant. The advantage of this approach is
that the OS footprint can often be trimmed
considerably. For example, software appliance
vendor rPath cites being able to cut down Zimbra’s
CentOS-based14 desktop software download from
2.1 GB to a few hundred MB by tailoring the OS.
In this case, the main motivation was to reduce the
download size. However, stripping out unnecessary
components can also reduce memory footprint and
even eliminate services that could be vectors for
various types of security attacks.

Cutting Out the Dependencies

Up to now, I’ve focused on virtualization’s effect on
the future of the OS—both from an architectural
perspective and because it has significant potential
to change how applications get deployed. However,
there are some other parallel developments that are
driving change as well.

13 See our Virtual Appliances Evolve for more background
about how virtual appliances are coming to market.

14 CentOS is a Linux distribution that is based on
Red Hat Enterprise Linux.

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

6

Historically, applications were very much tied to a
given OS running on a given variety of hardware.
In the early days, applications written in assembly
language—essentially a human-readable version of
the machine language that a processor actually
executed—were highly specific. However, programs
written in so-called high-level languages (such as
FORTRAN and C++) also require tweaking even
for similar platforms (such as different flavors of
Unix) and may require substantial “ports” in more
extreme cases. In any case, even when the source
code is similar, the final compiled binaries—the
code that executes on the system—are different for
each OS and processor variant with concomitant
implications for support effort and cost.

This 1:1 relationship between OS and application
version has had a significant effect on the whole
structure of the computer industry over the past 10
to 15 years. As ISVs like Oracle evolved to become
a more and more important part of the landscape,
they effectively picked winners and losers by
deciding which of a limited number of platforms
they would support with their applications.
Declining application availability on lower-volume
server and OS types was perhaps the most
significant factor that either drove second- and
third-tier system vendors out of the business or
forced them to adopt “industry standard”
platforms. This whole dynamic still largely rules
today. However, we’re seeing an increasing swath of
applications written either in “managed code” and
“scripting languages,” or that are dynamically
translated and rehosted.

”Managed code” includes languages such as
Microsoft’s C# running on Microsoft’s .NET
framework and Java running atop Java Virtual
Machines (JVM). Both .NET and JVMs provide
abstractions of the underlying machine and
operating system services, insulating programs
from the “bare metal.” So long as a Java program,
say, doesn’t bypass the JVM to talk directly to
underlying system services, Java code is mostly
blissfully ignorant of the OS. Perhaps things are
often not quite as straightforward and perfectly
universal as Java’s “write once, run anywhere”
mantra would suggest. Nonetheless, these runtime

systems provide a very high degree of program
transportability, even across divergent CPU
architectures—from x86 to Itanium, RISC,
mainframes, and even custom processor designs
found in cell phones or Azul’s Compute
Appliances.15

Scripting languages such as Perl, PHP, Python, and
Ruby are widely-used for Web-centric applications.
Programs written in scripting languages can often
run completely unchanged across a variety of
different OSs and even processor architectures, so
long as OS has the necessary pieces of software
infrastructure (interpreters, databases, and so
forth). They often use “bytecode interpreters”
much as Java and .NET do,16 but it’s the supporting
infrastructure—the modules of Perl, say, or the
Rails framework for Ruby—that does much of the
hard work of insulating programs from lower level
system resources. As with Java and .NET, that’s not
to say that there aren’t gotchas and quirks to
overcome, but there are nonetheless far fewer
dependencies than when an app is compiled for a
specific operating system.

Dynamic translation (and dynamic rehosting) runs
binaries from one operating system, runtime
environment, and CPU choice on a target system
that makes potentially very different choices. This
approach has been tried many times over the years,
with disappointments and more than a few outright
failures. But the approach has recently been
significantly advanced by Transitive.17 It got its big
break by providing the technology behind
“Rosetta” that allows PowerPC-based Apple OS X
applications to run unchanged on Intel-based Macs.
The IBM System p Application Virtualization
Environment (System p AVE or, informally, pAVE)
also uses Transitive’s QuickTransit to let 32-bit x86

15 The Common Language Runtime (CLR) that
supports .NET is arguably a little less general than
Java’s JVM, running mainly on x86 and Itanium
processors. But that is really a business decision on
Microsoft’s part, rather than a technical difference.

16 Some even piggyback. Jython and JRuby, for
example, respectively implement Python and Ruby
over Java’s JVM infrastructure.

17 See our Transitive’s Translations.

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

7

Linux applications run atop Linux-on-POWER.
Transitive can not only recode CPU instructions,
but also library calls. That is, it can dynamically
rehost from one operating environment to another.
It’s not easy, but there are many data points that
now show it not just works, but works well, at least
as a transition mechanism.

The significance of all this is that the OS and the
application were historically very much
intertwined. The OS mattered to the app and the
app vendors because every app version was married
to an operating system version. In a world of PHP
and Java, that relationship is far weaker. To be sure,
because of support concerns, software vendors will
continue to limit the number of platforms for
which they’ll certify their applications.
Nonetheless, this new reality of applications using
interfaces that are largely independent of the OS
and even the underlying hardware opens the door
for running those apps in ways that don’t depend
on one of the handful of today’s widely-used
operating systems. We see an extreme example in
BEA’s LiquidVM. However, we also see it in the
panoply of Linux distributions running LAMP
stacks with applications that don’t require the same
sort of certifications that are a major raison d’être
for the enterprise Linux distributions from Novell
and Red Hat.

Will the OS Matter?

At the same time, there’s both inertia and
pragmatic arguments in favor of general purpose
operating systems—even in virtual appliances.
These include the issues associated with
transitioning from the physical world to a virtual
one, the fact that ISVs don’t necessarily want to be
in the operating system business, and the reality
that operating systems aren’t wholly invisible.

Virtual appliances are an interesting development
and they could very well bring major changes to
the way that we deploy software. But it will take
some time. They’re still in their infancy, and are
mostly used today to get demo software up and
running quickly. Thus, it’s inevitably going to be

less appealing to an ISV to go off and create a
unique, optimized operating system for a small
slice of their market—especially when they’re also
busy figuring out licensing and other issues
associated with virtual appliances. Tools like rPath’s
rBuilder aim to streamline the process but,
nonetheless, it’s some degree of extra upfront
development and back-end support work to add
“yet another platform” to their development and
qualification matrix.

Nor do a lot of ISVs want to suddenly assume the
responsibility for updating and supporting a lot of
foundational components that are someone else’s
problem today. Users also don’t necessarily trust
some small ISV to keep some customized Linux
distro up-to-date with security patches. Just
because Oracle wants to own the whole software
stack doesn’t mean that everyone wants to.18 The
promise of the JeOS approach is that by building
the software as a unified structure, things will be
more reliable and easier to support—making the
extra effort worthwhile—but it’s too early to truly
know how well this will be borne out in practice.

Finally, it’s fine conceptually to talk about
operating system details being irrelevant, but that’s
an idealization and oversimplification. Even if
you’re “just running an application,” you often still
need to make trips to the command line or to
operating system tools that manage user access or
performance or whatever. The difference between
Linux distributions may not matter too much—at
least until you have to use some distro’s unique
packaging system to add some new software
component. But Linux and Solaris, AIX and HP-
UX, (much less Windows and OS X) differ
significantly from each other.

These are among the reasons that Red Hat has
itself introduced an appliance version of its Linux,
the Red Hat Appliance Operating System (AOS).
The idea is that applications that are certified for
Red Hat Enterprise Linux—which has more
certified apps than any other Linux distribution—

18 See our Oracle: Just Say No to Operating Systems.

single user license Gordon R Haff
Illuminata, Inc.

*095B83E5B03E297

TM

Through subscription research, advisory services, speaking engagements, strategic

planning, product selection assistance, and custom research, Illuminata helps

enterprises and service providers establish successful information technology.

8

will carry those certifications over to AOS. Red Hat
hopes that this will be a more natural bridge for
both ISVs and end-users than bringing in
something special just for appliances.

I expect that we will see a variety of approaches as
virtual appliances become more mainstream. In
some cases, the optimization and efficiency of a
crafted virtual appliance will win out, but, in many
others, the familiarity of a standard and accepted
operating system will be preferred.

Conclusion

2008 will not be the year that the operating system
changes in a radical way. Indeed, it probably won’t
happen to any substantial degree in this decade.
However, what we will see in 2008 is server
virtualization continuing its march to become just
part of “how computing is done.”

The consequences of that will affect how we do
many things in computing—including provisioning
applications, optimizing power and cooling, and
managing workload changes. And it will ultimately
affect what the operating system looks like. If one
accepts that hypervisors will essentially fold into
the hardware over time,19 it seems inevitable that
we’ll also evolve the operating system to be a better
architectural match for that environment. We
already see some early glimpses of various possible
futures that differ from today’s general purpose OS
model, whether BEA’s LiquidVM or rPath’s
customized Linux-based appliances.

The OS will change, but it will be mostly a matter
of slow evolution rather than rapid seismic shifts.

19 See our Will We See an Embedded VMware “ESX Light”? and The
Server Virtualization Bazaar, Circa 2007.

