

Illuminata, Inc. • 106 Main Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0199 f • www.illuminata.com

TM

Copyright © 2005 Illuminata, Inc.

Subdividing computers into smaller, more useful chunks is an enormously popular
idea these days. Once the sole province of the mainframes that pioneered them,
technologies such as partitioning, virtual machines (VM), and workload manage-
ment are now available across the entire server spectrum—from behemoth Unix
SMP super-servers right down to single-processor blades running Windows or
Linux.

1

 These different approaches to subdividing systems have legitimate tech-
nical distinctions; they are also the source of considerable marketing claims,
counter-claims, and battles.

2

The products and technologies have evolved enormously over the past several
years. Certainly they’ve become much more mainstream. They’ve also diverged

from largely focusing on the contain-
ment of hardware faults and system

errors toward approaches that center
on finer-grained, lower-overhead, and

more functional subdivisions.

3

The latest major entrant continues this
trend. “Containers” are intermediate between
partitions (including VMs) and traditional work-
load groups. They impose more order and sepa-
ration between programs and workloads than do

basic workload management tools—which are
primarily designed to regulate performance. But
they do so in a relatively lightweight way that is

more about creating the “illusion” of separation than
the physical reality of it. It’s an illusion that can be useful for manage-

ment, for security, and for efficiency.

Many Sizes and Shapes

As with other types of workload management and system partitioning, containers
aren’t a single “thing” with a single form. We think of containers as falling into
two broad categories: application containers and more generic operating system

1. See Illuminata report “Walling Off Workloads with Partitions” (June 2002).
2. See Illuminata report “The Partitioning Bazaar: 2002” (November 2002).
3. See e.g. Illuminata reports “POWER By The Piece” (July 2004) and “VMware on the

March” (August 2004).

New Containments for New Times

Research Note

Gordon Haff

24 January 2005

ghaff@
illuminata.com

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

Copyright © 2005 Illuminata, Inc. Personally licensed to Gordon R Haff of Illuminata, Inc. to educate him/her and
assist him/her in performing internal job functions. Providing its contents to external parties, including by excerpt or
quotation, is a violation of our copyright and is expressly forbidden. Email license@illuminata.com for broader rights.

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

2

containers. It’s a distinction that isn’t so much tech-

nological as one of aim and intended use. OS

containers essentially emulate the way partitions or

VMs carve a single system into multiple “logical

systems”—but without the multiple OS images or

overhead. Application containers use some of the

same technical approaches, but rather than a parti-

tioning alternative, are specifically focused on

encapsulating applications to ease their deployment

and migration.

At one extreme application containers can be little

more than a packaging approach. In the case of J2EE

application servers, “container” describes the

protected collections of classes and objects typically

deployed for a given application; they act as the

interface between a component and the low-level

platform-specific functionality that supports the

component. Containers manage services such as

enterprise bean and servlet life cycles, database

connection resource pooling, data persistence, and

access to the J2EE platform APIs. They thereby

reduce the amount of low-level detail with which

developers have to concern themselves. For

example, a

web container

 is a J2EE server compo-

nent that enables access to servlets and JSP pages.

Other forms are more sophisticated, operate at the

OS rather than middleware level, and use some of

the same isolation techniques as their more

general-purpose container brethren. A Trigence AE

or Meiosys MetaCluster container is an inter-

cepting layer that effectively decouples applications

from the infrastructure on which they run, and

thereby makes it easier to move them from one

system (or collection of systems) to another. Each

container includes necessary program files, a defini-

tion of the physical resources that they need to run,

and basic state information—such as an IP address.

In the case of Meiosys MetaCluster, the state of the

network connections is also part of the container so

as to allow relocation of connected applications

without service interruption.

Separating Workloads

Type Description Separate OS? Examples

Physical partition

Electrically-isolated partitions.
Maximum isolation but high cost and
low flexibility.

Yes
Sun Dynamic System Domains,
HP nPars

Logical partition

Primarily software-based but micropro-
cessors and firmware may provide some
additional hardware-based
fault isolation.

Yes IBM LPARs, HP vPars

Virtual machine

Breaks link between hardware and its
logical representation to the OS. Modest
to moderate performance overhead.

Yes
IBM z/VM, VMware ESX/GSX
Server, Microsoft Virtual Server

Operating system
container

Virtualize at the OS rather than hard-
ware level. “Hardened” namespace-
isolated workgroups under a single
OS instance.

No (but some
libraries, etc.
may be
replicated)

Solaris containers, SWsoft
Virtuozzo, Ensim VPS, BSD jails

Application container

Wrapper around application compo-
nents isolate from platform and simplify
migration and deployment.

No
J2EE containers, Trigence AE,
Meiosys MetaCluster

Workload group
management/“resource

partition”

Manages processes under an OS as
groups, typically to guarantee or limit
resources used by an application.

No
Sun S9RM, HP PRM/WLM, IBM
AIX WLM, Microsoft WSRM,
Aurema ARMTech

Process resource
management

Built-in, base-level control of
individual processes. No Unix ulimit

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

3

Operating system containers are more general-
purpose. They build off the workload group concept
that was part of the mainframe in the form of

jobs

and which came later to Unix (including Linux) and
Windows in the form of workload management
add-ons like AIX’s WLM, Aurema’s ARMtech, HP-
UX’s PRM, Solaris’ S9RM, and Windows’ WSRM.
This form of containers extends what have some-
times been called “workload management groups”
or “resource partitions” with a level of “namespace
isolation” between process groups that helps these
OS containers evolve beyond straightforward
workload management.

SWsoft’s Virtuozzo has been shipping a web
hosting-focused commercial product in this vein for
several years.

4

 BSD jails have been another
example. However, it’s Sun, with its long-talked-
about Solaris Containers in its new Solaris 10
release that has broached this style of container as a
technique on a par with VMs and other forms of
partitioning. It is this container form that is the
focus of the remainder of this note.

Virtualize Software, Not Hardware

Like partitions, a container presents the appearance
of being a separate and independent OS image—a
full system, really.

5

 But, like the workload groups
that containers extend, there’s only one actual copy
of an operating system running on a physical
server.

6

 Are containers lightweight partitions or
reinforced workload groups? That’s really a matter
of definition and interpretation, because they have
characteristics of each. It may help to think of them
as “enhanced resource partitions” that effectively
bridge the two categories.

Containers virtualize an OS; the applications
running in each container believe that they have
full, unshared access to their very own copy of that
OS. This is analogous to what VMs do when they
virtualize at a lower level, the

hardware

. The OS
running in each VM believes it has full, unshared
access to an entire physical machine. A layer of
software and firmware called a hypervisor main-
tains the illusion. In the case of containers, it’s the
OS that does the virtualization and maintains
the illusion.

The Progenitors

Containers build from the basic Unix process model
that forms the basis for separation.

7

 Although a
process is not

truly

 an independent environment, it
does provide basic isolation and consistent inter-
faces. For example, each process has its own identity
and security attributes, address space, copies of
registers, and independent references to common
system resources. These various features stan-
dardize communications between processes and
help reduce the degree to which wayward processes
and applications can affect the system as a whole.

Unix also builds in some basic resource manage-
ment at the process level—including priority-based
scheduling, augmented by things like the intrinsic
function

ulimit

, which can be used to set
maximum resources such as CPU cycles, file
descriptors, and locked memory used by a process
and its descendents.

Add-on resource management products go much
further. First of all, they group processes together in
flexible and logical ways that basic Unix does not.
For example, the Windows System Resource
Manager (WSRM) defines process groups using
what it calls “Process Matching Criteria”—rules
based on process names, filenames, paths, user
names, and other criteria.

8

 They also provide
multiple ways to carve up a system and guarantee
performance (or limit it) for this group of processes

4. See Illuminata report “Virtuozzo: The Lighter Side of
Virtual Machines” (August 2004).

5. For the most part. As in the case of the “single system
image” holy grail for clusters, the illusion is rarely
perfect in all cases for all circumstances.

6. Or partition; these techniques can be used in combi-
nation. Thus, one physical server can be divided into
two or more partitions and then subdivided further
using a lighter-weight technique such as containers.

7. Windows and OpenVMS use a similar, though
heavier-weight, process model.

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

4

that may correspond to a full
application environment.

However, these process or workload groups still
don’t provide any more security or fault contain-
ment than do the basic Unix services. That requires
an additional level of protection.

Making the Curtains Heavier

An historical example of upping the isolation of
workload groups dates to 1999 when the FreeBSD

jail(2)

 function reused the

chroot

 implemen-
tation, but blocked off the normal routes to escape

chroot

 confinement.

9

 Jails partition the file
system, process, and networking namespaces, and
remove the super-user privileges that objects not
entirely inside the jail would normally have.

As a newer and more sophisticated example, Solaris
10 bases its approach on a technology and adminis-
trative concept called

zones

.

10

 Solaris Containers
blend the capabilities and functions of these zones
with Solaris resource management.

Each Solaris 10 system can have one

global zone

and up to 8191 non-global zones. Solaris assigns
each zone an ID when it's booted. The global zone is
always ID 0; it is the only zone that contains a boot-
able Solaris kernel and is aware of all devices, file
systems, and other zones. The global zone is also
the only zone that can configure, install, and
manage other zones.

Indeed, non-global zones can’t see or interact with
other zones at all—except through standard
network interfaces. For example, the process ID
“namespace” is partitioned. Therefore, although

processes within the same zone interact as usual,
they can’t interact with—or indeed even see—
processes in other zones.

11

 Each zone also has its
own root directory that is allocated only an isolated
part of the file system hierarchy—thus, one zone
can’t see another zone’s data. Zones also can’t access
“pseudo-devices” that could be used to interact with
other zones.

12

Zones contain only a small subset of the operating
system—mostly the libraries or writable structures
that can differ from one OS instance to another.
Non-global zones also contain localized configura-
tion information and other zone-specific files and
directories. The

zoneadm

 utility creates a clean
zone image based on the global zone; it resets
configuration files to their “out-of-the-box” state
and skips any files that only make sense or are only
allowed (such as for security isolation reasons) in
the global zone.

Containers: The Good

Containers can be very low-overhead. Because they
run atop a single copy of the operating system, they
consume very few system resources such as
memory and CPU cycles. In particular, they require
far fewer resources than workload management
approaches that require a full OS copy for each
isolated instance. Virtuozzo, for instances, has 500
containers

13

 running today on a single x86 server in
a service provider production environment. To be
sure, this is a high-water mark, and the individual
tasks are lightweight. Still, it’s an example of the
dramatic multiplicity that containers can reach
compared to more resource-intensive partitioning
techniques. IBM zSeries and pSeries systems can
perhaps also stretch to multi-hundred instance

8. WSRM is included with Windows Server 2003 Enter-
prise and Datacenter Editions. See Illuminata report
“Windows Learns to Juggle” (May 2003) for a
detailed description of how this product works.

9. A

chroot

ed directory allows access to specific files
and directories—and, hence, operating system
features—that have been copied there.

10. Indeed, “Zones” was one of the many names that
Solaris Containers went through on its long path to
announcement, although Sun has now banished the
term from its marketing lexicon.

11. For example, the

ps

 command and the

proc

 file
system, a “pseudo file system” (which is used as an
interface to kernel data structures) only provide
information about processes in the local zone.

12. Such as

/dev/kmem

, which allows privileged soft-
ware read/write access to virtual memory.

13. Which it calls Virtual Private Servers, or VPSs
for short.

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

counts with LPARs or VMs—but only on multi-
million dollar Big Iron.

Containers tend to have lower management over-
head, given that there’s but a single OS to be
patched and kept current with security and bug
fixes. Once a set of patches is applied and the system
restarted, all containers automatically and immedi-
ately benefit. With other forms of partitioning, each
OS instance needs to be patched and updated sepa-
rately, just as they would if they were on indepen-
dent, physical servers.

These are critical attributes for certain environ-
ments. The fact that SWsoft has been particularly
successful with its container-like Virtuozzo product
in web hosting environments is neither a surprise
nor a coincidence.

14

 In shared hosting, resources
like CPU cycles translate directly into dollars—a
lighter-weight approach means that more virtual
servers can be configured on each physical one. And

that

 means more profits either directly or through
the ability to offer more competitive pricing. And,
with thousands or tens of thousands of virtual
instances to administer, patching once per physical
server rather than per virtual one is attractive
indeed—especially in a hosting environment where
OS images are typically quite standardized anyway.

Vendors like SWsoft and Trigence augment these
inherent container characteristics with extensive
service provider control panels and application
provisioning systems, respectively.

Finally, while containers don’t provide additional
fault isolation, the fact that processes running
within one container are 99.999% hidden from
processes running in other containers contributes
significantly to security hardening. What you can’t
see or even know exists, you can’t muck with. Such
“namespace isolation” also can help performance
tuning and problem identification/resolution, by
narrowing the scope of concerns and reducing the
number of variables that must be addressed.

Containers: The Bad

The major downside of containers is that they do
not provide much if any additional fault isolation
for problems arising

outside

 the process or group of
processes being contained. If the operating system
or underlying hardware goes, so go its containers—
that is,

every

 container running on the system.

15

While software running inside the competing VM
technology may be susceptible to a hardware fault,
it is at least isolated from operating system, driver,
and most security issues.

16

“Hard” forms of partitioning are even more
isolated—from both software and hardware
faults—but are only available on Big Iron gear with
backplanes that can electrically isolate modules.
Indeed, it’s not unusual to see hard partitions
combined with softer forms—VMs or containers
for ultimate flexibility and physical partitions to
limit the scope of more severe problems. Think of it
as defense in depth.

The one OS for every container model has some
other potential downsides. VMs and other forms of
partitioning are frequently used to run different
versions of operating systems, middleware, and
applications—whether to handle legacy code,
varying upgrade cycles, software interdependencies,
or to conduct testing. Containers, however, need to
run just one OS version and type in all containers
on a system. It is possible to load some container-
specific libraries, and thus have minor variations.
However, the more unique containers are, the less
their efficiency benefits, and the more they start to
look like more typical partitions—just less
isolated ones.

14. For example, leading hosting providers such as Go
Daddy and EV1Server have major VPS initiatives
powered by SWsoft’s Virtuozzo.

15. The same might be said of the hypervisor used in
other software-based partitioning techniques. But
hypervisors are much smaller and simpler than
typical full-OSs and therefore, in principle at least,
less likely to fail in complicated and hard-to-
predict ways.

16. Logical partitions (LPARs) such as those on IBM’s
POWER5 are also primarily software-based, but they
take advantage of their less-abstracted relationship
with the underlying hardware to also provide protec-
tion against certain types of hardware faults. They
also enjoy some tweaks and enforcement assistance
from the underlying CPU design and instruction set.

internal use only Gordon R Haff
Illuminata, Inc.

*507A2A19199FC7ED87D2F08FF47B6F4AE24EB56A

6

Containers also carry with them some configura-
tion restrictions and limitations that don’t exist
with other partition types—the result of playing
slight-of-hand within the OS to maintain their illu-
sion of separation.

17

 For example, in the case of
Solaris Containers, the system administrator has to
carefully manage how devices get assigned to
specific zones. Allowing unprivileged users to access
certain types of hardware could permit those
devices to be used to cause system-wide panic, bus
resets, or other adverse effects. Overriding the
default configuration and placing a physical device
into more than one zone could also create a covert
channel between zones or allow corruption by one
zone to affect another—but this is really no
different from the case of a SAN connected to
multiple physical systems or VMs.

Nor have containers yet been truly accepted by
ISVs like Oracle as a legitimate means to subdivide
systems for licensing purposes. If Oracle software
runs on an eight-processor partition—whether
physical, logical, or VM—within a 16-processor
system, Oracle only requires an eight-processor
license. But if the separation is only enforced by
resource management techniques, Oracle clearly
requires that the full 16 processors be licensed.
Thus, containers often can’t be used to manage
(read: decrease) software licensing costs in the same
way as harder forms of separation. Sun is working
with Oracle to change that policy (and, indeed, that
policy should change), but today it can disadvantage
containers

vis-à-vis

 other approaches.

While genuine, these drawbacks aren’t show-stop-
pers for many applications. Today, many applica-
tions successfully run side-by-side under a single
OS image without any additional isolation at all.
Containers provide a way to introduce additional
isolation, without requiring much of the system
resources or administrative overhead. Containers
are also certainly suitable for application develop-

ment and test scenarios, and even for some server
consolidation scenarios, especially those of
service provisioning.

Conclusion

A variety of products already providing containers
include BSD (Jails), Sun’s Solaris 10, SWsoft’s
Virtuozzo, and Trigence’s Application Environment
(AE). In short, containers are getting to be a very
common option for workload management
and isolation.

There are good reasons for this. Underlying hard-
ware and OSs have gotten more reliable. Sure, they
may still “blow up” from time to time—but
dramatically less frequently than in any year past.
Today, when the OS fails, it’s often the result of its
being misconfigured or improperly updated, an
operational problem that containers can help to
solve because one patch can apply to all the
containers on a system. OSs have also gotten more
sophisticated as well as more reliable. They have
more dials and knobs to tweak performance and
parameters. They have more gauges to see what’s
going on inside. These foundations for controlla-
bility and isolation give containers—which must
build on existing OS services to a large degree—a
solid foundation.

Marketing hype notwithstanding, one size rarely
fits all, and it’s the rare technical approach that is
drawback-free. Containers aren’t the panacea that
some of its more fervent supporters would have
you believe they are. It’s still sometimes important
to isolate faults in a most robust way, for example,
for critical, state-heavy enterprise apps like data-
bases. But for many other cases, the underlying
infrastructure is now reliable enough that the focus
can shift to lighter-weight and more flexible ways of
carving up a system—especially on the smaller
systems that have displaced Big Iron across so much
of the typical IT infrastructure. Containers don’t
suit every requirement, but they’re increasingly a
useful arrow in the quiver of datacenter architects
and admins.

17. Other partitions, especially VMs, are performing
their own magicians’ slight-of-hand. However,
because they’re doing so at a much lower level in the
system, the effects are better hidden from users and
administrators.

