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Modern cargo ships are about size. Bigger ships can transport large and unwieldy 
loads such as pre-fabricated bridge trusses or hundreds of truck-sized cargo con-
tainers. Big ships are also more efficient. The result is that container ships—which 
carry their cargo housed in more-or-less standardized boxes for simplified loading 
and unloading—have grown so large that some can’t even fit through the locks
of the Panama Canal. A “postPanamax” container ship like the approximately 
7,100 TEU
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 “S” class Carsten Maersk carries a load of containers that would stretch 
27 miles if placed end-to-end. The shipping industry is considering even larger 
vessels, whose bulk may be restrained only by the limits of key shipping channels 
around the world.
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However efficient, these beasts are not without limitations. “S” class ships ply a 
rigidly scheduled route that connects just 21 ports worldwide; New York and other 
harbors are being forced to dredge deeper channels and invest in larger cranes and 
docks to handle the biggest ships. Unloading the leviathans also requires enormous 
terminals with the room to store and sort monstrous piles of cargo from each ship, 
not to mention even increasing the capacity of roads, rails, and other transport 
links to move cargo from and to the docks.
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 The real limiting factor, it turns out, is 
not so much how large a container 
ship can be built, but whether the 
associated land-based cargo infra-
structure is burly enough to keep 
it running efficiently.   

Odd as the comparison may seem, 
this is the same problem micro-
processors have run into. The load 
they move is data, not containers, 
but microprocessors similarly 
continue to grow in both (die) size 
and capacity (total transistor 

 

1. Container ship capacity is measured TEUs (Twenty-foot Equivalent Unit). Most boxes in 
international use are 40 to 45 feet long and count as two TEUs. 

2. A 12,000 TEU container ship is the largest that can traverse the Suez Canal and 18,000 
TEU the largest that can pass through the Malacca Straits on the way from Singapore 
and Indonesia to Europe.

3. Maersk’s Pier 400 in Los Angeles cost almost $1 billion and sits on a 685 acre site with 
dedicated rail and highway lines.
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count). Large processors, like large cargo ships, are 
highly efficient only when they’re loaded quickly 
and fully, and sent off to do their part of the job. 

However, in practice, much of these chips’ prodi-
gious processing capacity goes to waste because a 
healthy percentage of the millions of cycles they 
run every second go off with less than a complete 
load of instructions to execute or data to process. 
Multi-gigahertz CPUs can execute billions of 
useful instructions per second, but they spend 
most of their time just waiting for data. Ways to 
address that waste take many forms and names—
throughput computing, thread-level parallelism, 
multi-core chips, hyperthreading, SMT, CMP, and 
CMT to name a few. All of these approaches take 
aim at the same “feeding problem.” All are part of 
a broad design shift away from monolithic single-
core microprocessors fed by a single thread of 
instructions, and toward designs with multiple 
cores, each of which is rapidly fed by multiple 
threads. Such throughput-oriented designs are 
critical as the long-standing performance gap 
between the processing and the data-holding 
parts of a system (both memory and disk) grows 
larger and more imposing every year.

 

Memory is a Drag

 

Why is it so hard to keep big processors fed? 

It used to be that one of the ultimate goals of micro-
processor design was to reach a point where at least 
some of the simpler instructions could execute in a 
single cycle. Today’s processors are routinely 

 

super-
scalar

 

; they use multiple execution units that let 
the CPU process not just one, but multiple instruc-
tions in a single clock tick. 

To get a sense of how impressive this advance is, 
consider that the Intel 8088 in the original IBM PC 
took two pokey 4.77 MHz clock ticks to perform the 
simplest data move operation (loading a register 
with a number). By contrast, a 1 GHz Itanium 2 is 
designed to simultaneously handle as many as six 
instructions—many of which it can complete in a 
single cycle—between its 200x shorter clock ticks. 
That’s over a 2,000-fold increase in processing 
potential. So what’s wrong with that?

One problem is the way processors pull instructions 
from a stream of data. All major microprocessors 
use Instruction Level Parallelism (ILP) to help them 
extract more than one instruction at a time from a 
single stream of instructions. This accelerates work 
in the same way that adding additional ticket clerks 
speeds the line at an airline check-in counter. The 
line is still single-file, but passengers at the head 
of the line divide among several ticket stations, 
reducing the size of the line more quickly, and de-
livering their requests
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 to the “processor” simul-
taneously. At least some of the additional agents 
are likely to be specialists, however; perhaps one 
handles only first-class customers; another, only 
passengers who already have tickets. To keep the 
flow moving to these specialized service areas, addi-
tional airline agents start plucking people out of 
order to direct them to the appropriate location. The 
result is that processing speeds up 

 

in toto

 

, but not 
proportionately to the resources added. The process 
of selection creates an increasing amount of unpro-
ductive overhead as pickers search for the right type 
of customer to be delivered to the right location.

Microprocessors, being, if it can be imagined, even 
less effective at handling intelligent sequencing 
than airline workers, have an even harder time 
getting the right kind of instructions delivered to 
the right kind of execution units. They can’t arbi-
trarily grab any random instruction anywhere in 
the queue to process; a processor’s fetching hard-
ware can only go so deep in the line of waiting 
instructions. What’s more, there are the dependen-
cies to deal with. Often the results of one operation 
are needed to start the next, so those two operations 
have to be handled in order. 

Perhaps worst of all is the huge disparity between 
the length of time it takes to process an instruction 
and the length of time it takes to retrieve additional 
instructions or associated data from memory. These 
delays are comparable, in airline terms, to walking 
across a terminal to ask in person how to deal with a 
complex customer request. Data in a cache on the 
processor is fed in relatively quickly, but even 
across the relatively short distances involved, 

 

4. In a processor, a “request” might consist of adding 
two numbers together or loading some number into a 
processor register.
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getting data from memory chips to the CPU causes a 
problematic delay that is only getting worse because 
the speed at which microprocessors can crunch data 
is ratcheting up more quickly than is the speed at 
which memory chips can feed it.
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The result is a big, sophisticated, wickedly-fast pro-
cessor that spends much of its time idle, waiting for 
appropriate instructions or data to be delivered from 
memory. Imagine if that whole line at the airport 
had to wait for a passenger who had to drive home 
first for a forgotten ticket, then back again to collect 
their ID, and then their luggage, and so on. Ridicu-
lous? Perhaps. But that’s exactly what happens when 
an instruction causes a processor to wait while data 
comes in on the slow boat from memory. The wait is 

 

hundreds

 

 or 

 

thousands

 

 of cycles. 

 

Inadequate Evolution

 

One approach to reducing all this waiting is applying 
a variety of “tricks” that, collectively, try to keep the 
chip’s execution units as busy as possible—even if it 
means doing some work that may turn out to be 
unnecessary. For example, processors pre-fetch in-
structions and data from memory into their caches. 
This often includes pulling down memory contents 
before the processor is sure they’re actually needed. 

This speculative loading is particularly important 
when there are branches in code (“if TRUE execute 
this code, else execute that code”). There usually are. 
Without pre-fetching and other preparatory activity, 
the processor would have to stop every time a branch 
was reached and wait to be shown the correct execu-
tion path to take, which would kill performance.
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Therefore, CPUs try to intelligently predict which 
branch will be followed based on past code patterns 
and other clues. This isn’t infallible, but even if it’s 
often wrong, guessing is better on average than 
consistently doing nothing. 

Another technique is to forget about trying to divine 
the code’s future and just go ahead and start down 
both paths. This 

 

speculative execution

 

 may seem like 
a profligate use of processor resources, but if those 

resources would have been wasted anyway, there’s 
little harm. Those compute resources aren’t usually 
the bottleneck, anyway; the memory lag is. 

Super-fast data stores built right on the processor 
itself—

 

caches

 

 that store the subset of main memory 
that’s been most recently accessed—are yet another 
tool. The caches nearest the CPU core can deliver 
instructions to the processor’s execution units in just 
a cycle or two—more than 100 times faster than 
they can be delivered from main memory. Even 
second and third-level caches, which are farther from 
the core than a first-level cache, are as much as 30 
times faster than memory. Caches are growing in 
capacity, taking advantage of the inexorable shrink-
age of the transistors making them up. They’re also 
getting more complex, distributed in more levels,
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 to 
better achieve the right mix of raw speed and size. 

These tools and techniques centered on reducing 
memory latency have gotten extremely sophisti-
cated. And they’re quite effective. After all, system 
performance 

 

is

 

 continuing to escalate in spite of the 
very real drag that memory speeds impose. 

But chip designers are paid to look to the future as 
well as to optimize the present. Pretty much every-
one agrees that fairly fundamental changes are 
needed to keep performance advancing apace. There’s 
even some consensus of the general direction of the 
changes. The debate is in the details and the degree 
to which one approach will win out over another.

 

5. See Illuminata note “Latency Matters!” (Sept. 2003). 

 

6. Stopping processors in their tracks and restarting them 
is enormously costly. Although the degree varies by 
design, all of today’s sophisticated processors are 
heavily 

 

pipelined

 

. They break instructions into smaller 
micro-operations to simplify the tasks that have to 
take place during each internal clock cycle. Once the 
pipeline is filled and churning along, this approach is 
quite effective; but when a pipeline gets flushed for 
any reason (such as switching to a branch other than 
the one executing) the performance hit is severe, 
because the pipeline needs to fill back up again before 
proceeding. In the Intel NetBurst microarchitecture, 
for example, the highly important branch-predic-
tion/recovery pipeline is implemented in 20 stages.

7. For example, Intel’s Xeon and Itanium 2 processors 
both have three levels of cache—each level succes-
sively larger, but slower. System vendors building Big 
Iron from Intel processors, such as IBM and Unisys, 
often augment per-processor caches with yet another 
level of cache (L4), shared by several CPUs. 
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Tweaking the ability of processors to wring the most 
out of a single instruction stream can only go so far. 
Yet even Intel’s Itanium Processor Family (IPF), at 
least in its current incarnation, has much in common 
with the traditional high-end RISC approach in that 
it’s a single large processor core connected to large 
on-chip caches. The 

 

means

 

 by which it strives to 
keep its multiple execution units fed differs from 
RISC,
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 but the 

 

end—

 

high parallelism within a single 
instruction stream as measured by the number of 
instructions per cycle (IPC)—is the same. 

Expanding cache size is an equally limited option. 
The 6 MB cache in the upcoming “Madison” version 
of Itanium 2, for example, consumes more than half 
the processor’s total area. Indeed, Itanium 2 is per-
haps the ultimate engine for wringing parallelism 
out of a single instruction stream—as is particularly 
well demonstrated by its prowess in high perfor-
mance computing (HPC) and certain encryption 
algorithms. In contrast to the less uniformly struc-
tured and more I/O intensive code of commercial 
transactions, HPC is often characterized by repeti-
tive, compute-intensive, and highly-optimized algo-
rithms with plenty of “tight loops”—all character-
istics that can translate into lots of instructions per 
clock, and, therefore, effective ILP.
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As optimization tricks become more sophisticated 
and intricate, however, the gains from incremental 
advancements diminish. It happens with auto fuel 
efficiency. It happens with stereo equipment. And it 
happens with today’s high clock rate, super-scalar, 
out-of-order executing RISC cores.
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 Eventually, big 
changes are the only way to get noticeable improve-
ments. With apologies to the high-end audiophiles 

who still think vinyl gives a “warmer” sound, the 
last big enhancement to consumer audio didn’t come 
from designing a better turntable, it came from 
introducing the CD, which did away with pops, skips, 
and worn needles.

 

A New Plan

 

But there’s an alternative design approach. Rather 
than devoting a chip’s entire area to a single large 
processing engine and its associated caches, it’s 
possible to split the chip into two or more smaller 
engines, each of which is capable of handling a sepa-
rate instruction stream. This multiprocessor-on-a-
chip approach—often called Chip Multi Processing 
(CMP) or just multi-core—attacks the problem of 
single-minded processors that are growing in size 
faster than they can be fed with instructions and 
data by cutting them into pieces, each of which can 
work in parallel. It’s the logical equivalent of 
replacing one big chip with several smaller ones. 
However, physically consolidating them onto a 
single die typically cuts the per-processor-core cost. 
What’s more, multiple cores on a single chip can 
communicate and coordinate with each other more 
quickly than if they were on separate chips, often 
leading to better overall scalability. 

Chip designers also have a complementary tech-
nique up their sleeves, called Simultaneous Multi 
Threading (SMT). SMT makes a single processor 
core appear to software as two or more separate 
CPUs, even though there is only one core and set of 
execution units physically present. SMT requires 
some incremental circuitry; each logical processor 
(or thread) needs its own copy of certain resources 
to let it present to software the illusion that it is 
an independent CPU. However, these resources—
which include the instruction pointer, Instruction 
Translation Lookaside Buffer (ITLB), and various 
registers—take up a relatively small number of tran-
sistors. Simple implementations, for example, take 
up only about five percent of the total chip area, far 
less than duplicating the entire processor core. Intel 
is delivering (and heavily promoting) SMT under 
the trade name “Hyperthreading” on all its current 
32-bit processors today,
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 but it’s also on the near-
term roadmaps of both IBM and Sun. 

 

8. IPF is based on what Intel calls EPIC (Explicitly 
Parallel Instruction Computing), a derivative of VLIW 
(Very Long Instruction Word) architectures, in which 
much of the parallelizing work gets passed off to 
compliers, rather than having to be performed in real-
time by the processor. 

9. Although some types of HPC, such as life sciences, 
film processing and rendering, and petroleum reser-
voir simulation, are becoming quite data intensive as 
well, which makes I/O at least as important as raw 
compute power of any type. 

10. Including a chip like Intel’s Pentium 4 that, in spite of 
supporting a complex instruction set to maintain back-
ward software compatibility, is optimized to run a rela-
tively small number of instructions very efficiently. 
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E Pluribus, Power

 

These alternative approaches tilt the space-planning 
portion of chip design toward smaller and simpler 
cores and more threads per core, and away from 
monolithic layouts. They take a thread-level paral-
lelism (TLP) approach—in contrast to the instruc-
tion-level parallelism that’s been the focus of 
microprocessor design to date. Rather than relying 
on a series of tricks to pump a single instruction 
stream through as quickly as possible, TLP tech-
niques are designed to let the chip handle several 
chains of instructions at once, efficiently switching 
away from tasks that are waiting for data to arrive 
from memory, and replacing them with tasks that 
have their data ready for processing. 

Underlying TLP is the fact that modern server 
programs
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 tend to be extensively multi-threaded, 
throwing off many streams of code that execute 
autonomously. This is the result of optimizing for 
SMP servers that range from two up to 32, 64, or 

more processors. Without such multi-threading, a 
program could only run on a single processor—
which would rather defeat the purpose of SMP. The 
TLP approach provides those many threads with 
lots of cores (or logical cores in the case of SMT) on 
which to execute, while cutting down on the 
number of discrete physical CPU chips and inter-
connects, as well as the infrastructure needed to 
support them. TLP can’t speed up memory. But if 
the core waiting for data is one of many lightweight 
units, rather than one of a small number of heavier 
editions, the overall performance cost to the system 
is much reduced. 

This thread-based approach demands more system 
bandwidth than ILP because more of the work is 
being done outside the processor; TLP requires that 
the system maintains more simultaneous instruc-
tion streams between memory and CPUs. In addi-
tion, TLP processors would tend to have smaller 
individual cache sizes because space-consuming 
caches exist primarily to reduce average memory 
latency—an overriding concern for current ILP 
designs, but not as much for TLP. Smaller caches, 
however, tend to further increase system bandwidth 
demands when they are too small to hold the data 
or code that is reused, and which must then be 
retrieved from memory.

TLP doesn’t eliminate system design challenges, but 
it definitely reduces them. Goosing up a system’s 
bandwidth is relatively straightforward; building 

 

11. These “Netburst” micro-architecture CPUs include 
both the Pentium 4 and Xeon families.

12. Desktop computers also run multiple threads. A quick 
visit to the Windows XP task manager shows 
Microsoft Word using 10 threads, the Mozilla 
browser using 15, a Symantec virus-scanner using 36, 
and all programs using 452 threads in aggregate. 
However, although multi-threading is becoming 
more widespread within heavyweight desktop appli-
cations like Adobe Photoshop, it remains less perva-
sive than on servers. 

Instruction
Level

Parallelism

Thread
Level

Parallelism

Multicore

SMT
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fatter pipes throughout the system is more a ques-
tion of cost than theory or architecture. Latency, 
however, is more the result of fundamental limits of 
technology and physics—things like the speed of 
light that are not so easy to overcome. 

Of course, TLP vs. ILP is not an all-or-nothing 
proposition. A processor core used within a TLP-
oriented approach still wants to run a given thread 
as quickly as possible—and that means using some 
ILP techniques like caches and branch prediction. 
The object isn’t to yank all the ILP optimizations 
out of the processor, but rather to find that right 
mix that delivers the best overall performance for 
the target application mix. So TLP cores will still 
have ILP optimizations, though fewer of them, less 
intensively cultivated; truly heroic measures like 
out-of-order execution, speculative execution, and 
proliferating execution units are therefore much 
less likely to permeate TLP designs, while straight-
forward optimizations like caching and multiple 
register I/O ports are highly likely.

 

The Thread Wars Heat Up

 

The advent of TLP is upon us. Everyone from 
IBM to Intel to Sun understands that it’s coming, 
though their approaches and advocacy come at 
different levels. 

Sun is the leading advocate for TLP, explicitly 
weaving the idea of thread-level parallelism into 
all its statements about future processor directions 
under the banner of “throughput computing.” And 
it’s not just talk. Sun’s applying a combination of 
experience developed internally (such as that ob-
tained developing its MAJC graphics engine) and 
acquired externally (through its purchase of Afara 
Websystems) to make TLP very much the center-
piece of its future SPARC microprocessors. The 
most exuberant example of this is “Niagara,” a
32-simultaneous-threads CPU due to appear in 
systems late in 2005 or early in 2006.
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13. See Illuminata note “Sun: Better Computing 
Through Threads” (July 2003). 

 

Major server microprocessor plans for multiple cores and multiple threads per core

 

Today Future (Public Roadmap)

 

Vendor/Architecture Multi-core SMT Multi-core and/or SMT

AMD / AMD64

 

No No No

 

Intel / IA-32

 

No
2 threads (aka 

hyperthreading)
Hyperthreading continues.

 

Intel / IPF

 

No No Dual-core (Montecito in 2005)

 

a

 

a.

 

It has been reported, but not confirmed by Intel, that a post-Montecito generation of the Itanium Processor 
Family (Tanglewood) will have additional cores and possibly SMT.

 

HP PA-RISC

 

No No Dual-core (PA-8800 in late 2003)

 

IBM POWER

 

Dual-core 
(POWER4)

No

Dual-core/dual-thread-per-core 
(POWER5 in 2004)

“Ultra high frequency cores” 
(POWER6 in 2006)

 

Sun SPARC

 

No No

Dual-core (UltraSPARC IV in 2004)

 

b

 

Dual-core (Gemini in 2004)

 

c

 

8 cores/4 threads-per-core (Niagara 
in 2005)

 

c

 

b.

 

The UltraSPARC V (2006) will also support up to two total threads in a design that will be able to effectively work 
as a single large core or two smaller ones.

 

c.

 

Unlike the UltraSPARC IV, which is designed for use in Sun’s large SMP servers, Gemini and Niagara are targeted 
for blades and other scale-out systems.
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Other vendors are not as directly focused on TLP, nor 
do they feature it so centrally in their product road-
maps. But that’s not to say that they are ignoring the 
trend toward thread-level (rather than instruction 
level) parallelism. Indeed, both IBM and Intel have 
already incorporated considerable TLP capabilities 
into their own chips, whereas Sun has yet to do so.

IBM, for example, began shipping dual processor 
cores in its POWER4 processors in late 2001. Forth-
coming POWER5 designs continue down the multi-
core path, adding multi-thread support as well. HP’s 
PA-8800 processors due in late 2003 will be multi-
core designs. 

Even Intel—the company Sun likes to hold up as pro-
ducing the industry’s ultimately monolithic, mania-
cally ILP chip, Itanium—is a heavy promoter of 
multi-threading in its Pentium 4 designs. It began 
introducing “HyperThreading” (a form of SMT) to 
Pentium 4 in mid-2002, and has extended HT to most 
Pentium and Xeon chips since. To be sure, SMT will 
continue to serve somewhat different purposes de-
pending upon the complexity of the processor core 
with which it’s paired. With a super-scalar core such 
as that found on Intel’s 32-bit Pentium 4 and Xeon 
CPUs, SMT aims to keep the multiple execution units 
busier than is possible with ILP techniques alone by 
layering thread-style parallelism atop ILP; it’s not 
exclusively concerned with switching away from 
instruction streams that have been held up by mem-
ory latencies. By contrast, Sun is looking to pair SMT 
primarily with simple cores, where it will act as more 
of a fast thread-switching technique that directs CPU 
resources toward those threads that have their associ-
ated data in from memory and ready for processing. 
The overall concept—multiple logical processors per 

physical processor—is the same in both cases, but in 
one case SMT very much augments ILP while in the 
other case it largely offers itself as an alternative.

However, Intel also sells a hugely multi-threaded 
network processor, albeit of a specialized architecture 
and design,

 

14

 

 and it has acquired a significant body of 
SMT intellectual property and a number of designers 
from the now-ended Alpha processor family.

 

 15

 

Everyone’s heading toward TLP. Most or all of the 
major processor options will gain TLP optimizations 
over the next three years. Some are just heading there 
faster and with a more determined step than others. 

 

More Ports, More Ships

 

Which sounds more efficient: a single big cargo ship 
that waits for every last container to arrive before it 
can leave port or a fleet of small boats that can leave 
individually from a variety of different ports as each 
container shows up? Sure the big boat is pretty effi-
cient once it’s fully loaded and underway, but feeding 
it with cargo takes costly and rarified infrastructure. 
And anything that causes it to sit idle is enormously 
wasteful of resources. 

Microprocessor design is shifting from monolithic to 
modular as it shifts from an ILP-centric approach to a 
more TLP-centric one. ILP won’t go away entirely—
think a fleet of mid-sized cargo ships rather than an 
ocean full of tiny motorboats. But no longer will the 
ultimate processor be the one with the biggest, 
baddest single core. 

 

14. The IXP2800 family puts 16 multi-threaded processing 
engines onto a single chip. IBM also sells network 
processors under the PowerNP label; they also have 16 
“pico processors.”

15. Intel will reportedly mine much of this “EV8” IP for 
future generations of Itanium. 
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