

Illuminata, Inc. • 106 Main Street • Nashua, NH 03060 • 603.598.0099 • 603.598.0199 f • www.illuminata.com

TM

Copyright © 2003 Illuminata, Inc.

Modern cargo ships are about size. Bigger ships can transport large and unwieldy
loads such as pre-fabricated bridge trusses or hundreds of truck-sized cargo con-
tainers. Big ships are also more efficient. The result is that container ships—which
carry their cargo housed in more-or-less standardized boxes for simplified loading
and unloading—have grown so large that some can’t even fit through the locks
of the Panama Canal. A “postPanamax” container ship like the approximately
7,100 TEU

1

 “S” class Carsten Maersk carries a load of containers that would stretch
27 miles if placed end-to-end. The shipping industry is considering even larger
vessels, whose bulk may be restrained only by the limits of key shipping channels
around the world.

2

However efficient, these beasts are not without limitations. “S” class ships ply a
rigidly scheduled route that connects just 21 ports worldwide; New York and other
harbors are being forced to dredge deeper channels and invest in larger cranes and
docks to handle the biggest ships. Unloading the leviathans also requires enormous
terminals with the room to store and sort monstrous piles of cargo from each ship,
not to mention even increasing the capacity of roads, rails, and other transport
links to move cargo from and to the docks.

3

 The real limiting factor, it turns out, is
not so much how large a container
ship can be built, but whether the
associated land-based cargo infra-
structure is burly enough to keep
it running efficiently.

Odd as the comparison may seem,
this is the same problem micro-
processors have run into. The load
they move is data, not containers,
but microprocessors similarly
continue to grow in both (die) size
and capacity (total transistor

1. Container ship capacity is measured TEUs (Twenty-foot Equivalent Unit). Most boxes in
international use are 40 to 45 feet long and count as two TEUs.

2. A 12,000 TEU container ship is the largest that can traverse the Suez Canal and 18,000
TEU the largest that can pass through the Malacca Straits on the way from Singapore
and Indonesia to Europe.

3. Maersk’s Pier 400 in Los Angeles cost almost $1 billion and sits on a 685 acre site with
dedicated rail and highway lines.

Breaking Up The
Microprocessor Monolith

Research Note

Gordon Haff

9 July 2003

ghaff@
illuminata.com

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

Copyright © 2003 Illuminata, Inc.
Personally licensed to Gordon
Haff of Illuminata to educate
him/her and assist him/her in
performing internal job functions.
Providing its contents to external
parties, including by excerpt or
quotation, is a violation of our
copyright and is expressly
forbidden. Email
license@illuminata.com for
broader rights.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

2

count). Large processors, like large cargo ships, are
highly efficient only when they’re loaded quickly
and fully, and sent off to do their part of the job.

However, in practice, much of these chips’ prodi-
gious processing capacity goes to waste because a
healthy percentage of the millions of cycles they
run every second go off with less than a complete
load of instructions to execute or data to process.
Multi-gigahertz CPUs can execute billions of
useful instructions per second, but they spend
most of their time just waiting for data. Ways to
address that waste take many forms and names—
throughput computing, thread-level parallelism,
multi-core chips, hyperthreading, SMT, CMP, and
CMT to name a few. All of these approaches take
aim at the same “feeding problem.” All are part of
a broad design shift away from monolithic single-
core microprocessors fed by a single thread of
instructions, and toward designs with multiple
cores, each of which is rapidly fed by multiple
threads. Such throughput-oriented designs are
critical as the long-standing performance gap
between the processing and the data-holding
parts of a system (both memory and disk) grows
larger and more imposing every year.

Memory is a Drag

Why is it so hard to keep big processors fed?

It used to be that one of the ultimate goals of micro-
processor design was to reach a point where at least
some of the simpler instructions could execute in a
single cycle. Today’s processors are routinely

super-
scalar

; they use multiple execution units that let
the CPU process not just one, but multiple instruc-
tions in a single clock tick.

To get a sense of how impressive this advance is,
consider that the Intel 8088 in the original IBM PC
took two pokey 4.77 MHz clock ticks to perform the
simplest data move operation (loading a register
with a number). By contrast, a 1 GHz Itanium 2 is
designed to simultaneously handle as many as six
instructions—many of which it can complete in a
single cycle—between its 200x shorter clock ticks.
That’s over a 2,000-fold increase in processing
potential. So what’s wrong with that?

One problem is the way processors pull instructions
from a stream of data. All major microprocessors
use Instruction Level Parallelism (ILP) to help them
extract more than one instruction at a time from a
single stream of instructions. This accelerates work
in the same way that adding additional ticket clerks
speeds the line at an airline check-in counter. The
line is still single-file, but passengers at the head
of the line divide among several ticket stations,
reducing the size of the line more quickly, and de-
livering their requests

4

 to the “processor” simul-
taneously. At least some of the additional agents
are likely to be specialists, however; perhaps one
handles only first-class customers; another, only
passengers who already have tickets. To keep the
flow moving to these specialized service areas, addi-
tional airline agents start plucking people out of
order to direct them to the appropriate location. The
result is that processing speeds up

in toto

, but not
proportionately to the resources added. The process
of selection creates an increasing amount of unpro-
ductive overhead as pickers search for the right type
of customer to be delivered to the right location.

Microprocessors, being, if it can be imagined, even
less effective at handling intelligent sequencing
than airline workers, have an even harder time
getting the right kind of instructions delivered to
the right kind of execution units. They can’t arbi-
trarily grab any random instruction anywhere in
the queue to process; a processor’s fetching hard-
ware can only go so deep in the line of waiting
instructions. What’s more, there are the dependen-
cies to deal with. Often the results of one operation
are needed to start the next, so those two operations
have to be handled in order.

Perhaps worst of all is the huge disparity between
the length of time it takes to process an instruction
and the length of time it takes to retrieve additional
instructions or associated data from memory. These
delays are comparable, in airline terms, to walking
across a terminal to ask in person how to deal with a
complex customer request. Data in a cache on the
processor is fed in relatively quickly, but even
across the relatively short distances involved,

4. In a processor, a “request” might consist of adding
two numbers together or loading some number into a
processor register.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

3

getting data from memory chips to the CPU causes a
problematic delay that is only getting worse because
the speed at which microprocessors can crunch data
is ratcheting up more quickly than is the speed at
which memory chips can feed it.

5

The result is a big, sophisticated, wickedly-fast pro-
cessor that spends much of its time idle, waiting for
appropriate instructions or data to be delivered from
memory. Imagine if that whole line at the airport
had to wait for a passenger who had to drive home
first for a forgotten ticket, then back again to collect
their ID, and then their luggage, and so on. Ridicu-
lous? Perhaps. But that’s exactly what happens when
an instruction causes a processor to wait while data
comes in on the slow boat from memory. The wait is

hundreds

 or

thousands

 of cycles.

Inadequate Evolution

One approach to reducing all this waiting is applying
a variety of “tricks” that, collectively, try to keep the
chip’s execution units as busy as possible—even if it
means doing some work that may turn out to be
unnecessary. For example, processors pre-fetch in-
structions and data from memory into their caches.
This often includes pulling down memory contents
before the processor is sure they’re actually needed.

This speculative loading is particularly important
when there are branches in code (“if TRUE execute
this code, else execute that code”). There usually are.
Without pre-fetching and other preparatory activity,
the processor would have to stop every time a branch
was reached and wait to be shown the correct execu-
tion path to take, which would kill performance.

6

Therefore, CPUs try to intelligently predict which
branch will be followed based on past code patterns
and other clues. This isn’t infallible, but even if it’s
often wrong, guessing is better on average than
consistently doing nothing.

Another technique is to forget about trying to divine
the code’s future and just go ahead and start down
both paths. This

speculative execution

 may seem like
a profligate use of processor resources, but if those

resources would have been wasted anyway, there’s
little harm. Those compute resources aren’t usually
the bottleneck, anyway; the memory lag is.

Super-fast data stores built right on the processor
itself—

caches

 that store the subset of main memory
that’s been most recently accessed—are yet another
tool. The caches nearest the CPU core can deliver
instructions to the processor’s execution units in just
a cycle or two—more than 100 times faster than
they can be delivered from main memory. Even
second and third-level caches, which are farther from
the core than a first-level cache, are as much as 30
times faster than memory. Caches are growing in
capacity, taking advantage of the inexorable shrink-
age of the transistors making them up. They’re also
getting more complex, distributed in more levels,

7

 to
better achieve the right mix of raw speed and size.

These tools and techniques centered on reducing
memory latency have gotten extremely sophisti-
cated. And they’re quite effective. After all, system
performance

is

 continuing to escalate in spite of the
very real drag that memory speeds impose.

But chip designers are paid to look to the future as
well as to optimize the present. Pretty much every-
one agrees that fairly fundamental changes are
needed to keep performance advancing apace. There’s
even some consensus of the general direction of the
changes. The debate is in the details and the degree
to which one approach will win out over another.

5. See Illuminata note “Latency Matters!” (Sept. 2003).

6. Stopping processors in their tracks and restarting them
is enormously costly. Although the degree varies by
design, all of today’s sophisticated processors are
heavily

pipelined

. They break instructions into smaller
micro-operations to simplify the tasks that have to
take place during each internal clock cycle. Once the
pipeline is filled and churning along, this approach is
quite effective; but when a pipeline gets flushed for
any reason (such as switching to a branch other than
the one executing) the performance hit is severe,
because the pipeline needs to fill back up again before
proceeding. In the Intel NetBurst microarchitecture,
for example, the highly important branch-predic-
tion/recovery pipeline is implemented in 20 stages.

7. For example, Intel’s Xeon and Itanium 2 processors
both have three levels of cache—each level succes-
sively larger, but slower. System vendors building Big
Iron from Intel processors, such as IBM and Unisys,
often augment per-processor caches with yet another
level of cache (L4), shared by several CPUs.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

4

Tweaking the ability of processors to wring the most
out of a single instruction stream can only go so far.
Yet even Intel’s Itanium Processor Family (IPF), at
least in its current incarnation, has much in common
with the traditional high-end RISC approach in that
it’s a single large processor core connected to large
on-chip caches. The

means

 by which it strives to
keep its multiple execution units fed differs from
RISC,

8

 but the

end—

high parallelism within a single
instruction stream as measured by the number of
instructions per cycle (IPC)—is the same.

Expanding cache size is an equally limited option.
The 6 MB cache in the upcoming “Madison” version
of Itanium 2, for example, consumes more than half
the processor’s total area. Indeed, Itanium 2 is per-
haps the ultimate engine for wringing parallelism
out of a single instruction stream—as is particularly
well demonstrated by its prowess in high perfor-
mance computing (HPC) and certain encryption
algorithms. In contrast to the less uniformly struc-
tured and more I/O intensive code of commercial
transactions, HPC is often characterized by repeti-
tive, compute-intensive, and highly-optimized algo-
rithms with plenty of “tight loops”—all character-
istics that can translate into lots of instructions per
clock, and, therefore, effective ILP.

9

As optimization tricks become more sophisticated
and intricate, however, the gains from incremental
advancements diminish. It happens with auto fuel
efficiency. It happens with stereo equipment. And it
happens with today’s high clock rate, super-scalar,
out-of-order executing RISC cores.

10

 Eventually, big
changes are the only way to get noticeable improve-
ments. With apologies to the high-end audiophiles

who still think vinyl gives a “warmer” sound, the
last big enhancement to consumer audio didn’t come
from designing a better turntable, it came from
introducing the CD, which did away with pops, skips,
and worn needles.

A New Plan

But there’s an alternative design approach. Rather
than devoting a chip’s entire area to a single large
processing engine and its associated caches, it’s
possible to split the chip into two or more smaller
engines, each of which is capable of handling a sepa-
rate instruction stream. This multiprocessor-on-a-
chip approach—often called Chip Multi Processing
(CMP) or just multi-core—attacks the problem of
single-minded processors that are growing in size
faster than they can be fed with instructions and
data by cutting them into pieces, each of which can
work in parallel. It’s the logical equivalent of
replacing one big chip with several smaller ones.
However, physically consolidating them onto a
single die typically cuts the per-processor-core cost.
What’s more, multiple cores on a single chip can
communicate and coordinate with each other more
quickly than if they were on separate chips, often
leading to better overall scalability.

Chip designers also have a complementary tech-
nique up their sleeves, called Simultaneous Multi
Threading (SMT). SMT makes a single processor
core appear to software as two or more separate
CPUs, even though there is only one core and set of
execution units physically present. SMT requires
some incremental circuitry; each logical processor
(or thread) needs its own copy of certain resources
to let it present to software the illusion that it is
an independent CPU. However, these resources—
which include the instruction pointer, Instruction
Translation Lookaside Buffer (ITLB), and various
registers—take up a relatively small number of tran-
sistors. Simple implementations, for example, take
up only about five percent of the total chip area, far
less than duplicating the entire processor core. Intel
is delivering (and heavily promoting) SMT under
the trade name “Hyperthreading” on all its current
32-bit processors today,

 11

 but it’s also on the near-
term roadmaps of both IBM and Sun.

8. IPF is based on what Intel calls EPIC (Explicitly
Parallel Instruction Computing), a derivative of VLIW
(Very Long Instruction Word) architectures, in which
much of the parallelizing work gets passed off to
compliers, rather than having to be performed in real-
time by the processor.

9. Although some types of HPC, such as life sciences,
film processing and rendering, and petroleum reser-
voir simulation, are becoming quite data intensive as
well, which makes I/O at least as important as raw
compute power of any type.

10. Including a chip like Intel’s Pentium 4 that, in spite of
supporting a complex instruction set to maintain back-
ward software compatibility, is optimized to run a rela-
tively small number of instructions very efficiently.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

5

E Pluribus, Power

These alternative approaches tilt the space-planning
portion of chip design toward smaller and simpler
cores and more threads per core, and away from
monolithic layouts. They take a thread-level paral-
lelism (TLP) approach—in contrast to the instruc-
tion-level parallelism that’s been the focus of
microprocessor design to date. Rather than relying
on a series of tricks to pump a single instruction
stream through as quickly as possible, TLP tech-
niques are designed to let the chip handle several
chains of instructions at once, efficiently switching
away from tasks that are waiting for data to arrive
from memory, and replacing them with tasks that
have their data ready for processing.

Underlying TLP is the fact that modern server
programs

12

 tend to be extensively multi-threaded,
throwing off many streams of code that execute
autonomously. This is the result of optimizing for
SMP servers that range from two up to 32, 64, or

more processors. Without such multi-threading, a
program could only run on a single processor—
which would rather defeat the purpose of SMP. The
TLP approach provides those many threads with
lots of cores (or logical cores in the case of SMT) on
which to execute, while cutting down on the
number of discrete physical CPU chips and inter-
connects, as well as the infrastructure needed to
support them. TLP can’t speed up memory. But if
the core waiting for data is one of many lightweight
units, rather than one of a small number of heavier
editions, the overall performance cost to the system
is much reduced.

This thread-based approach demands more system
bandwidth than ILP because more of the work is
being done outside the processor; TLP requires that
the system maintains more simultaneous instruc-
tion streams between memory and CPUs. In addi-
tion, TLP processors would tend to have smaller
individual cache sizes because space-consuming
caches exist primarily to reduce average memory
latency—an overriding concern for current ILP
designs, but not as much for TLP. Smaller caches,
however, tend to further increase system bandwidth
demands when they are too small to hold the data
or code that is reused, and which must then be
retrieved from memory.

TLP doesn’t eliminate system design challenges, but
it definitely reduces them. Goosing up a system’s
bandwidth is relatively straightforward; building

11. These “Netburst” micro-architecture CPUs include
both the Pentium 4 and Xeon families.

12. Desktop computers also run multiple threads. A quick
visit to the Windows XP task manager shows
Microsoft Word using 10 threads, the Mozilla
browser using 15, a Symantec virus-scanner using 36,
and all programs using 452 threads in aggregate.
However, although multi-threading is becoming
more widespread within heavyweight desktop appli-
cations like Adobe Photoshop, it remains less perva-
sive than on servers.

Instruction
Level

Parallelism

Thread
Level

Parallelism

Multicore

SMT

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

6

fatter pipes throughout the system is more a ques-
tion of cost than theory or architecture. Latency,
however, is more the result of fundamental limits of
technology and physics—things like the speed of
light that are not so easy to overcome.

Of course, TLP vs. ILP is not an all-or-nothing
proposition. A processor core used within a TLP-
oriented approach still wants to run a given thread
as quickly as possible—and that means using some
ILP techniques like caches and branch prediction.
The object isn’t to yank all the ILP optimizations
out of the processor, but rather to find that right
mix that delivers the best overall performance for
the target application mix. So TLP cores will still
have ILP optimizations, though fewer of them, less
intensively cultivated; truly heroic measures like
out-of-order execution, speculative execution, and
proliferating execution units are therefore much
less likely to permeate TLP designs, while straight-
forward optimizations like caching and multiple
register I/O ports are highly likely.

The Thread Wars Heat Up

The advent of TLP is upon us. Everyone from
IBM to Intel to Sun understands that it’s coming,
though their approaches and advocacy come at
different levels.

Sun is the leading advocate for TLP, explicitly
weaving the idea of thread-level parallelism into
all its statements about future processor directions
under the banner of “throughput computing.” And
it’s not just talk. Sun’s applying a combination of
experience developed internally (such as that ob-
tained developing its MAJC graphics engine) and
acquired externally (through its purchase of Afara
Websystems) to make TLP very much the center-
piece of its future SPARC microprocessors. The
most exuberant example of this is “Niagara,” a
32-simultaneous-threads CPU due to appear in
systems late in 2005 or early in 2006.

13

13. See Illuminata note “Sun: Better Computing
Through Threads” (July 2003).

Major server microprocessor plans for multiple cores and multiple threads per core

Today Future (Public Roadmap)

Vendor/Architecture Multi-core SMT Multi-core and/or SMT

AMD / AMD64

No No No

Intel / IA-32

No
2 threads (aka

hyperthreading)
Hyperthreading continues.

Intel / IPF

No No Dual-core (Montecito in 2005)

a

a.

It has been reported, but not confirmed by Intel, that a post-Montecito generation of the Itanium Processor
Family (Tanglewood) will have additional cores and possibly SMT.

HP PA-RISC

No No Dual-core (PA-8800 in late 2003)

IBM POWER

Dual-core
(POWER4)

No

Dual-core/dual-thread-per-core
(POWER5 in 2004)

“Ultra high frequency cores”
(POWER6 in 2006)

Sun SPARC

No No

Dual-core (UltraSPARC IV in 2004)

b

Dual-core (Gemini in 2004)

c

8 cores/4 threads-per-core (Niagara
in 2005)

c

b.

The UltraSPARC V (2006) will also support up to two total threads in a design that will be able to effectively work
as a single large core or two smaller ones.

c.

Unlike the UltraSPARC IV, which is designed for use in Sun’s large SMP servers, Gemini and Niagara are targeted
for blades and other scale-out systems.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

7

Other vendors are not as directly focused on TLP, nor
do they feature it so centrally in their product road-
maps. But that’s not to say that they are ignoring the
trend toward thread-level (rather than instruction
level) parallelism. Indeed, both IBM and Intel have
already incorporated considerable TLP capabilities
into their own chips, whereas Sun has yet to do so.

IBM, for example, began shipping dual processor
cores in its POWER4 processors in late 2001. Forth-
coming POWER5 designs continue down the multi-
core path, adding multi-thread support as well. HP’s
PA-8800 processors due in late 2003 will be multi-
core designs.

Even Intel—the company Sun likes to hold up as pro-
ducing the industry’s ultimately monolithic, mania-
cally ILP chip, Itanium—is a heavy promoter of
multi-threading in its Pentium 4 designs. It began
introducing “HyperThreading” (a form of SMT) to
Pentium 4 in mid-2002, and has extended HT to most
Pentium and Xeon chips since. To be sure, SMT will
continue to serve somewhat different purposes de-
pending upon the complexity of the processor core
with which it’s paired. With a super-scalar core such
as that found on Intel’s 32-bit Pentium 4 and Xeon
CPUs, SMT aims to keep the multiple execution units
busier than is possible with ILP techniques alone by
layering thread-style parallelism atop ILP; it’s not
exclusively concerned with switching away from
instruction streams that have been held up by mem-
ory latencies. By contrast, Sun is looking to pair SMT
primarily with simple cores, where it will act as more
of a fast thread-switching technique that directs CPU
resources toward those threads that have their associ-
ated data in from memory and ready for processing.
The overall concept—multiple logical processors per

physical processor—is the same in both cases, but in
one case SMT very much augments ILP while in the
other case it largely offers itself as an alternative.

However, Intel also sells a hugely multi-threaded
network processor, albeit of a specialized architecture
and design,

14

 and it has acquired a significant body of
SMT intellectual property and a number of designers
from the now-ended Alpha processor family.

 15

Everyone’s heading toward TLP. Most or all of the
major processor options will gain TLP optimizations
over the next three years. Some are just heading there
faster and with a more determined step than others.

More Ports, More Ships

Which sounds more efficient: a single big cargo ship
that waits for every last container to arrive before it
can leave port or a fleet of small boats that can leave
individually from a variety of different ports as each
container shows up? Sure the big boat is pretty effi-
cient once it’s fully loaded and underway, but feeding
it with cargo takes costly and rarified infrastructure.
And anything that causes it to sit idle is enormously
wasteful of resources.

Microprocessor design is shifting from monolithic to
modular as it shifts from an ILP-centric approach to a
more TLP-centric one. ILP won’t go away entirely—
think a fleet of mid-sized cargo ships rather than an
ocean full of tiny motorboats. But no longer will the
ultimate processor be the one with the biggest,
baddest single core.

14. The IXP2800 family puts 16 multi-threaded processing
engines onto a single chip. IBM also sells network
processors under the PowerNP label; they also have 16
“pico processors.”

15. Intel will reportedly mine much of this “EV8” IP for
future generations of Itanium.

internal use only Gordon Haff
Illuminata

27ecd7da44ce1220

TM

Through subscription research, advisory services, speaking engagements, strategic

planning, product selection assistance, and custom research, Illuminata helps

enterprises and service providers establish successful infrastructure in five key areas:

Server Technologies, Information Logistics, Application Strategies,

Enterprise Management, and Pervasive Automation.

